Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. G. White is active.

Publication


Featured researches published by T. G. White.


Scientific Reports | 2012

Observation of inhibited electron-ion coupling in strongly heated graphite

T. G. White; Jan Vorberger; Colin Brown; B. J. B. Crowley; P. Davis; S. H. Glenzer; J. W. O. Harris; D. C. Hochhaus; S. Le Pape; T. Ma; C. D. Murphy; P. Neumayer; L. K. Pattison; S. Richardson; Dirk O. Gericke; G. Gregori

Creating non-equilibrium states of matter with highly unequal electron and lattice temperatures (Tele≠Tion) allows unsurpassed insight into the dynamic coupling between electrons and ions through time-resolved energy relaxation measurements. Recent studies on low-temperature laser-heated graphite suggest a complex energy exchange when compared to other materials. To avoid problems related to surface preparation, crystal quality and poor understanding of the energy deposition and transport mechanisms, we apply a different energy deposition mechanism, via laser-accelerated protons, to isochorically and non-radiatively heat macroscopic graphite samples up to temperatures close to the melting threshold. Using time-resolved x ray diffraction, we show clear evidence of a very small electron-ion energy transfer, yielding approximately three times longer relaxation times than previously reported. This is indicative of the existence of an energy transfer bottleneck in non-equilibrium warm dense matter.


Structural Dynamics | 2017

Structural enzymology using X-ray free electron lasers

Christopher Kupitz; Jose L. Olmos; Mark R. Holl; Lee Tremblay; Kanupriya Pande; Suraj Pandey; Dominik Oberthür; Mark S. Hunter; Mengning Liang; Andrew Aquila; Jason Tenboer; George Calvey; Andrea M. Katz; Yujie Chen; Max O. Wiedorn; Juraj Knoška; Alke Meents; Valerio Majriani; Tyler Norwood; Ishwor Poudyal; Thomas D. Grant; Mitchell D. Miller; Weijun Xu; Aleksandra Tolstikova; Andrew J. Morgan; Markus Metz; Jose M. Martin-Garcia; James Zook; Shatabdi Roy-Chowdhury; Jesse Coe

Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic resolution, (ii) time resolution ranging from microseconds to seconds, and (iii) convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions.


Scientific Reports | 2016

The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography

Petra Edlund; Heikki Takala; Elin Claesson; Léocadie Henry; Robert Dods; Heli Lehtivuori; Matthijs Panman; Kanupriya Pande; T. G. White; Takanori Nakane; Oskar Berntsson; Emil Gustavsson; Petra Båth; Vaibhav Modi; Shatabdi Roy-Chowdhury; James Zook; Peter Berntsen; Suraj Pandey; Ishwor Poudyal; Jason Tenboer; Christopher Kupitz; Anton Barty; Petra Fromme; J. D. Koralek; Tomoyuki Tanaka; John C. Spence; Mengning Liang; Mark S. Hunter; Sébastien Boutet; Eriko Nango

Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived from conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. The study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.


Scientific Reports | 2015

Evidence for a glassy state in strongly driven carbon

C R D Brown; Dirk O. Gericke; Marco Cammarata; B. I. Cho; T. Döppner; K. Engelhorn; E. Förster; C. Fortmann; David M. Fritz; E. Galtier; S. H. Glenzer; M Harmand; Philip A. Heimann; N. L. Kugland; D. Q. Lamb; Hae Ja Lee; R. W. Lee; Henrik T. Lemke; M. Makita; A. Moinard; C. D. Murphy; B. Nagler; P. Neumayer; Kai-Uwe Plagemann; R. Redmer; David Riley; F.B. Rosmej; P. Sperling; S. Toleikis; S. M. Vinko

Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid.


Physics of Plasmas | 2017

Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo

P. Tzeferacos; A. Rigby; A. F. A. Bott; A. R. Bell; R. Bingham; A. Casner; Fausto Cattaneo; E. Churazov; J. Emig; Norbert Flocke; F. Fiuza; Cary Forest; J. Foster; Carlo Alberto Graziani; J. Katz; M. Koenig; C. K. Li; J. Meinecke; R. D. Petrasso; H.-S. Park; B. A. Remington; J. S. Ross; Dongsu Ryu; D. D. Ryutov; Klaus Weide; T. G. White; Brian Reville; Francesco Miniati; A. A. Schekochihin; D. H. Froula

The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.


Physics of Plasmas | 2014

Observations of strong ion-ion correlations in dense plasmas

T. Ma; L. B. Fletcher; A. Pak; D. A. Chapman; R. W. Falcone; C. Fortmann; E. Galtier; Dirk O. Gericke; G. Gregori; J. B. Hastings; O. L. Landen; S. Le Pape; H. J. Lee; B. Nagler; P. Neumayer; D. Turnbull; Jan Vorberger; T. G. White; Kathrin Wünsch; U. Zastrau; Siegfried H. Glenzer; T. Döppner

Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ∼3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4A−1. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical pro...


Journal of Synchrotron Radiation | 2016

Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

Michael E. Rutherford; David J. Chapman; T. G. White; Michael Drakopoulos; Alexander Rack; Daniel E. Eakins

Scintillator performance in time-resolved, hard, indirect detection X-ray studies on the sub-microsecond timescale at synchrotron light sources is reviewed, modelled and examined experimentally. LYSO:Ce is found to be the only commercially available crystal suitable for these experiments.


Journal of Instrumentation | 2011

In-situ determination of dispersion and resolving power in simultaneous multiple-angle XUV spectroscopy

U. Zastrau; V Hilbert; C R D Brown; T. Döppner; S Dziarzhytski; E. Förster; S. H. Glenzer; S. Göde; G. Gregori; M Harmand; D. C. Hochhaus; T. Laarmann; Hae Ja Lee; K. H. Meiwes-Broer; P Neumayer; A. Przystawik; P. Radcliffe; M Schulz; S Skruszewicz; F. Tavella; J. Tiggesbäumker; S. Toleikis; T. G. White

We report on the simultaneous determination of non-linear dispersion functions and resolving power of three flat-field XUV grating spectrometers. A moderate-intense short-pulse infrared laser is focused onto technical aluminum which is commonly present as part of the experimental setup. In the XUV wavelength range of 10?19 nm, the spectrometers are calibrated using Al-Mg plasma emission lines. This cross-calibration is performed in-situ in the very same setup as the actual main experiment. The results are in excellent agreement with ray-tracing simulations. We show that our method allows for precise relative and absolute calibration of three different XUV spectrometers.


Science | 2018

Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser.

Przemyslaw Nogly; Tobias Weinert; Daniel James; Sergio Carbajo; Dmitry Ozerov; Antonia Furrer; Dardan Gashi; Veniamin Borin; Petr Skopintsev; Kathrin Jaeger; Karol Nass; Petra Båth; Robert Bosman; Jason E. Koglin; Matthew Seaberg; Thomas J. Lane; Demet Kekilli; Steffen Brünle; Tomoyuki Tanaka; Wenting Wu; Christopher J. Milne; T. G. White; Anton Barty; Uwe Weierstall; Valérie Panneels; Eriko Nango; So Iwata; Mark S. Hunter; Igor Schapiro; Gebhard F. X. Schertler

Look fast Organisms from bacteria to humans sense and react to light. Proteins that contain the light-sensitive molecule retinal couple absorption of light to conformational changes that produce a signal or move ions across a membrane. Nogly et al. used an x-ray laser to probe the earliest structural changes to the retinal chromophore within microcrystals of the ion pump bacteriorhodopsin (see the Perspective by Moffat). The excited-state retinal wiggles but is held in place so that only one double bond of retinal is capable of isomerizing. A water molecule adjacent to the proton-pumping Schiff base responds to changes in charge distribution in the chromophore even before the movement of atoms begins. Science, this issue p. eaat0094; see also p. 127 Ultrafast crystallography captures the response of the pigment of bacteriorhodopsin to absorption of light. INTRODUCTION Retinal is a light-sensitive protein ligand that is used by all domains of life to process the information and energy content of light. Retinal-binding proteins are integral membrane proteins that drive vital biological processes, including light sensing for spatial orientation and circadian clock adjustment, as well as maintaining electrochemical gradients through ion transport. They also form the basis for optogenetic manipulation of neural cells. How the protein environment guides retinal isomerization on a subpicosecond time scale toward a single high-yield product is a fundamental outstanding question in photobiology. RATIONALE Light-induced isomerization of retinal is among the fastest reactions known in biology. It has been widely studied by spectroscopic techniques to probe the evolution of spectral intermediates over time. Using x-ray free-electron lasers (XFELs), it is now possible to observe ultrafast photochemical reactions and their induced molecular motions within proteins on scales of femtoseconds to milliseconds with near-atomic structural resolution. In this work, we used XFEL radiation to study the structural dynamics of retinal isomerization in the light-driven proton-pump bacteriorhodopsin (bR). The principal mechanism of isomerization in this prototypical retinal-binding protein has direct relevance for all other members of this important family of membrane proteins, and it provides insight into how protein environments catalyze photochemical reactions in general. RESULTS We collected high-resolution x-ray diffraction data from bR microcrystals injected across the femtosecond x-ray pulses of the Linac Coherent Light Source after excitation of the retinal chromophore by an optical laser pulse. X-ray diffraction images were sorted into temporal subgroups with a precision of about 200 fs. A series of 18 overlapping difference Fourier electron density maps reveal structural changes over the first picosecond of retinal photoexcitation. Complementary data for time delays of 10 ps and 8.33 ms allow us to resolve the later stages of the reaction. In combination with refined crystallographic structures at pump-probe delays corresponding to where the spectroscopically characterized I, J, K, and M intermediates form in solution, our time-resolved structural data reveal the trajectory of retinal isomerization and provide atomic details at key points along the reaction. The aspartic acid residues of the retinal counterion and functional water molecules in close proximity to the retinal Schiff base respond collectively to the formation and decay of the excited state. This collective motion sets the stage for retinal isomerization, which proceeds via a twisted retinal configuration. Quantum mechanics/molecular mechanics simulations provide theoretical support for this structural evolution. CONCLUSION Our observations reveal how, concomitant with the formation of the earliest excited state, the retinal-binding pocket opens up in close proximity to the isomerizing bond. We propose that ultrafast charge transfer along retinal is a driving force for collective motions that contribute to the stereoselectivity and efficiency of retinal isomerization within a protein scaffold. Vibrational quake-like motions extending from retinal to the protein may also be a mechanism through which excess energy is released in a nonradiative fashion. Time-resolved serial crystallography resolves ultrafast atomic motions of retinal and the surrounding protein following photoexcitation. Retinal evolves from an all-trans conformation in the ground state toward a twisted 13-cis retinal over the course of a few hundred femtoseconds. The complex counterion, formed by two aspartic acid residues (Asp) and a water molecule (Wat), responds to changes in the electronic structure of the chromophore on the same time scale as the formation of the excited state. Ultrafast isomerization of retinal is the primary step in photoresponsive biological functions including vision in humans and ion transport across bacterial membranes. We used an x-ray laser to study the subpicosecond structural dynamics of retinal isomerization in the light-driven proton pump bacteriorhodopsin. A series of structural snapshots with near-atomic spatial resolution and temporal resolution in the femtosecond regime show how the excited all-trans retinal samples conformational states within the protein binding pocket before passing through a twisted geometry and emerging in the 13-cis conformation. Our findings suggest ultrafast collective motions of aspartic acid residues and functional water molecules in the proximity of the retinal Schiff base as a key facet of this stereoselective and efficient photochemical reaction.


Nature Communications | 2017

A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics

P. Mabey; S. Richardson; T. G. White; L. B. Fletcher; S. H. Glenzer; N. J. Hartley; Jan Vorberger; Dirk O. Gericke; G. Gregori

The state and evolution of planets, brown dwarfs and neutron star crusts is determined by the properties of dense and compressed matter. Due to the inherent difficulties in modelling strongly coupled plasmas, however, current predictions of transport coefficients differ by orders of magnitude. Collective modes are a prominent feature, whose spectra may serve as an important tool to validate theoretical predictions for dense matter. With recent advances in free electron laser technology, X-rays with small enough bandwidth have become available, allowing the investigation of the low-frequency ion modes in dense matter. Here, we present numerical predictions for these ion modes and demonstrate significant changes to their strength and dispersion if dissipative processes are included by Langevin dynamics. Notably, a strong diffusive mode around zero frequency arises, which is not present, or much weaker, in standard simulations. Our results have profound consequences in the interpretation of transport coefficients in dense plasmas.

Collaboration


Dive into the T. G. White's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. H. Glenzer

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. Neumayer

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Ma

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. B. Fletcher

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge