Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. H. Jarrett is active.

Publication


Featured researches published by T. H. Jarrett.


The Astronomical Journal | 2006

The Two Micron All Sky Survey (2MASS)

Michael F. Skrutskie; Roc Michael Cutri; R. F. Stiening; Weinberg; Stephen E. Schneider; John M. Carpenter; C. A. Beichman; Randy Capps; T. J. Chester; John E Elias; J. P. Huchra; James Liebert; Carol J. Lonsdale; David G. Monet; Stephan D. Price; Patrick Seitzer; T. H. Jarrett; J. D. Kirkpatrick; John E. Gizis; E. M. Howard; T. Evans; John W. Fowler; L. Fullmer; Robert L. Hurt; Robert M. Light; Eugene Kopan; K. A. Marsh; Howard L. McCallon; R Tam; S. D. van Dyk

Between 1997 June and 2001 February the Two Micron All Sky Survey (2MASS) collected 25.4 Tbytes of raw imagingdatacovering99.998%ofthecelestialsphereinthenear-infraredJ(1.25 � m),H(1.65 � m),andKs(2.16 � m) bandpasses. Observations were conducted from two dedicated 1.3 m diameter telescopes located at Mount Hopkins, Arizona,andCerroTololo,Chile.The7.8sofintegrationtimeaccumulatedforeachpointontheskyandstrictquality control yielded a 10 � point-source detection level of better than 15.8, 15.1, and 14.3 mag at the J, H, and Ks bands, respectively, for virtually the entire sky. Bright source extractions have 1 � photometric uncertainty of <0.03 mag and astrometric accuracy of order 100 mas. Calibration offsets between any two points in the sky are <0.02 mag. The 2MASS All-Sky Data Release includes 4.1 million compressed FITS images covering the entire sky, 471 million source extractions in a Point Source Catalog, and 1.6 million objects identified as extended in an Extended Source Catalog.


Publications of the Astronomical Society of the Pacific | 2003

SINGS: The SIRTF Nearby Galaxies Survey

Robert C. Kennicutt; Lee Armus; G. J. Bendo; Daniela Calzetti; Daniel A. Dale; B. T. Draine; C. W. Engelbracht; Karl D. Gordon; Albert D. Grauer; George Helou; David J. Hollenbach; T. H. Jarrett; Lisa J. Kewley; Claus Leitherer; Aigen Li; Sangeeta Malhotra; Michael W. Regan; G. H. Rieke; Marcia J. Rieke; Helene Roussel; J.-D. T. Smith; Michele D. Thornley; Fabian Walter

The SIRTF Nearby Galaxy Survey is a comprehensive infrared imaging and spectroscopic survey of 75 nearby galaxies. Its primary goal is to characterize the infrared emission of galaxies and their principal infrared-emitting components, across a broad range of galaxy properties and star formation environments. SINGS will provide new insights into the physical processes connecting star formation to the interstellar medium properties of galaxies and provide a vital foundation for understanding infrared observations of the distant universe and ultraluminous and active galaxies. The galaxy sample and observing strategy have been designed to maximize the scientific and archival value of the data set for the SIRTF user community at large. The SIRTF images and spectra will be supplemented by a comprehensive multiwavelength library of ancillary and complementary observations, including radio continuum, H i, CO, submillimeter, BVRIJHK ,H a ,P aa, ultraviolet, and X-ray data. This paper describes the main astrophysical issues to be addressed by SINGS, the galaxy sample and the observing strategy, and the SIRTF and other ancillary data products.


The Astrophysical Journal | 2007

The calibration of mid-infrared star formation rate indicators

D. Calzetti; Robert C. Kennicutt; C. W. Engelbracht; Claus Leitherer; B. T. Draine; Lisa J. Kewley; John Moustakas; Megan L. Sosey; Daniel A. Dale; Karl D. Gordon; G. Helou; David J. Hollenbach; Lee Armus; G. J. Bendo; Caroline Bot; Brent Alan Buckalew; T. H. Jarrett; Aigen Li; Martin Meyer; E. J. Murphy; Moire K. M. Prescott; Michael W. Regan; G. H. Rieke; Helene Roussel; Kartik Sheth; J. D. Smith; Michele D. Thornley; F. Walter

With the goal of investigating the degree to which the MIR emission traces the SFR, we analyze Spitzer 8 and 24 μm data of star-forming regions in a sample of 33 nearby galaxies with available HST NICMOS images in the Paα (1.8756 μm) emission line. The galaxies are drawn from the SINGS sample and cover a range of morphologies and a factor ~10 in oxygen abundance. Published data on local low-metallicity starburst galaxies and LIRGs are also included in the analysis. Both the stellar continuum-subtracted 8 μm emission and the 24 μm emission correlate with the extinction-corrected Paα line emission, although neither relationship is linear. Simple models of stellar populations and dust extinction and emission are able to reproduce the observed nonlinear trend of the 24 μm emission versus number of ionizing photons, including the modest deficiency of 24 μm emission in the low-metallicity regions, which results from a combination of decreasing dust opacity and dust temperature at low luminosities. Conversely, the trend of the 8 μm emission as a function of the number of ionizing photons is not well reproduced by the same models. The 8 μm emission is contributed, in larger measure than the 24 μm emission, by dust heated by nonionizing stellar populations, in addition to the ionizing ones, in agreement with previous findings. Two SFR calibrations, one using the 24 μm emission and the other using a combination of the 24 μm and Hα luminosities (Kennicutt and coworkers), are presented. No calibration is presented for the 8 μm emission because of its significant dependence on both metallicity and environment. The calibrations presented here should be directly applicable to systems dominated by ongoing star formation.


Publications of the Astronomical Society of the Pacific | 2003

SWIRE: The SIRTF Wide-Area Infrared Extragalactic Survey

Carol J. Lonsdale; Harding E. Smith; Michael Rowan-Robinson; Jason A. Surace; D. L. Shupe; Cong Xu; S. J. Oliver; Deborah Lynne Padgett; F. Fang; Tim Conrow; A. Franceschini; Nick Gautier; Matthew Joseph Griffin; Perry B. Hacking; Frank J. Masci; G. Morrison; Joanne O’Linger; Frazer N. Owen; I. Perez-Fournon; M. Pierre; Gordon J. Stacey; Sandra Castro; Maria del Carmen Polletta; D. Farrah; T. H. Jarrett; D. T. Frayer; Brian D. Siana; T. Babbedge; Simon Dye; M. Fox

The largest of the SIRTF Legacy programs, SWIRE will survey 65 sq. deg. in seven high latitude fields selected to be the best wide low-extinction windows into the extragalactic sky. SWIRE will detect millions of spheroids, disks and starburst galaxies to z>3 and will map L* and brighter systems on scales up to 150 Mpc at z∼0.5–1. It will also detect ∼104 low extinction AGN and large numbers of obscured AGN. An extensive program of complementary observations is underway. The data are non-proprietary and will be made available beginning in Spring 2004.


Monthly Notices of the Royal Astronomical Society | 2009

The 6dF Galaxy Survey: final redshift release (DR3) and southern large-scale structures

D. Heath Jones; Mike Read; Will Saunders; Matthew Colless; T. H. Jarrett; Quentin A. Parker; A. P. Fairall; Thomas Mauch; Elaine M. Sadler; Fred G. Watson; D. Burton; Lachlan Campbell; Paul Cass; Scott M. Croom; J. A. Dawe; Kristin Fiegert; Leela M. Frankcombe; Malcolm Hartley; John P. Huchra; Dionne James; Emma M. Kirby; Ofer Lahav; John R. Lucey; Gary A. Mamon; Lesa Moore; Bruce A. Peterson; Sayuri L. Prior; Dominique Proust; K. S. Russell; V. Safouris

We report the final redshift release of the 6dF Galaxy Survey (6dFGS), a combined redshift and peculiar velocity survey over the southern sky (|b| > 10°). Its 136 304 spectra have yielded 110 256 new extragalactic redshifts and a new catalogue of 125 071 galaxies making near-complete samples with (K, H, J, r_F, b_J) ≤ (12.65, 12.95, 13.75, 15.60, 16.75). The median redshift of the survey is 0.053. Survey data, including images, spectra, photometry and redshifts, are available through an online data base. We describe changes to the information in the data base since earlier interim data releases. Future releases will include velocity dispersions, distances and peculiar velocities for the brightest early-type galaxies, comprising about 10 per cent of the sample. Here we provide redshift maps of the southern local Universe with z ≤ 0.1, showing nearby large-scale structures in hitherto unseen detail. A number of regions known previously to have a paucity of galaxies are confirmed as significantly underdense regions. The URL of the 6dFGS data base is http://www-wfau.roe.ac.uk/6dFGS.


The Astrophysical Journal | 2001

The K-Band Galaxy Luminosity Function* **

C. S. Kochanek; Michael Andrew Pahre; Emilio E. Falco; John P. Huchra; Jeff A. Mader; T. H. Jarrett; T. J. Chester; Roc Michael Cutri; Stephen E. Schneider

We measured the K-band luminosity function using a complete sample of 4192 morphologically typed 2MASS galaxies with ? = 20 mag arcsec-2 isophotal magnitudes 7 -0.5) galaxies have similarly shaped luminosity functions, ?e = -0.92 ? 0.10 and ?l = -0.87 ? 0.09. The early-type galaxies are brighter, MK*e = -23.53 ? 0.06 mag compared to MK*l = -22.98 ? 0.06 mag, but less numerous, n*e = (0.45 ? 0.06) ? 10-2 h3 Mpc-3 compared to n*l = (1.01 ? 0.13) ? 10-2 h3?Mpc-3 for H0 = 100 h km s-1 Mpc-1, such that the late-type galaxies slightly dominate the K-band luminosity density, jlate/jearly = 1.17 ? 0.12. Including a factor of 1.20 ? 0.04 correction for the conversion of the isophotal survey magnitudes to total magnitudes, the local K-band luminosity density is j = (7.14 ? 0.75) ? 108 h L? Mpc-3, which implies a stellar mass density relative to critical of ?*h = (1.9 ? 0.2) ? 10-3 for a Kennicutt initial mass function (IMF) and ?*h = (3.4 ? 0.4) ? 10-3 for a Salpeter IMF. Our morphological classifications are internally consistent, are consistent with previous classifications, and lead to luminosity functions unaffected by the estimated uncertainties in the classifications. These luminosity functions accurately predict the K-band number counts and redshift distributions for K 18 mag, beyond which the results depend on galaxy evolution and merger histories.


Monthly Notices of the Royal Astronomical Society | 2004

The 6dF Galaxy Survey: samples, observational techniques and the first data release

D. Heath Jones; Will Saunders; Matthew Colless; Mike Read; Quentin A. Parker; Fred G. Watson; Lachlan Campbell; Daniel Burkey; Tom Mauch; Lesa Moore; Malcolm Hartley; Paul Cass; Dionne James; K. S. Russell; Kristin Fiegert; J. A. Dawe; John P. Huchra; T. H. Jarrett; Ofer Lahav; John R. Lucey; Gary A. Mamon; Dominique Proust; Elaine M. Sadler; Ken-Ichi Wakamatsu

The 6dF Galaxy Survey (6dFGS) aims to measure the redshifts of around 150 000 galaxies, and the peculiar velocities of a 15 000-member subsample, over almost the entire southern sky. When complete, it will be the largest redshift survey of the nearby Universe, reaching out to about z similar to 0.15, and more than an order of magnitude larger than any peculiar velocity survey to date. The targets are all galaxies brighter than K-tot = 12.75 in the 2MASS Extended Source Catalog (XSC), supplemented by 2MASS and SuperCOSMOS galaxies that complete the sample to limits of (H, J, r(F), b(J)) = (13.05, 13.75, 15.6, 16.75). Central to the survey is the Six-Degree Field (6dF) multifibre spectrograph, an instrument able to record 150 simultaneous spectra over the 5.7-field of the UK Schmidt Telescope. An adaptive tiling algorithm has been employed to ensure around 95 per cent fibring completeness over the 17 046 deg(2) of the southern sky with \b\ > 10degrees. Spectra are obtained in two observations using separate V and R gratings, that together give R similar to 1000 over at least 4000-7500 Angstrom and signal-to-noise ratio similar to10 per pixel. Redshift measurements are obtained semi-automatically, and are assigned a quality value based on visual inspection. The 6dFGS data base is available at http://www-wfau.roe.ac.uk/6dFGS/, with public data releases occurring after the completion of each third of the survey.


The Astrophysical Journal | 2007

An Ultraviolet-to-Radio Broadband Spectral Atlas of Nearby Galaxies

Daniel A. Dale; A. Gil de Paz; Karl D. Gordon; H. M. Hanson; Lee Armus; G. J. Bendo; Luciana Bianchi; Miwa Block; S. Boissier; A. Boselli; Brent Alan Buckalew; V. Buat; D. Burgarella; Daniela Calzetti; John M. Cannon; C. W. Engelbracht; G. Helou; David J. Hollenbach; T. H. Jarrett; Robert C. Kennicutt; Claus Leitherer; Aigen Li; Barry F. Madore; D. C. Martin; Martin Meyer; E. J. Murphy; Michael W. Regan; Helene Roussel; J. D. Smith; Megan L. Sosey

The ultraviolet-to-radio continuum spectral energy distributions are presented for all 75 galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS). A principal component analysis of the sample shows that most of the samples spectral variations stem from two underlying components, one representative of a galaxy with a low infrared-to-ultraviolet ratio and one representative of a galaxy with a high infrared-to-ultraviolet ratio. The influence of several parameters on the infrared-to-ultraviolet ratio is studied (e.g., optical morphology, disk inclination, far-infrared color, ultraviolet spectral slope, and star formation history). Consistent with our understanding of normal star-forming galaxies, the SINGS sample of galaxies in comparison to more actively star-forming galaxies exhibits a larger dispersion in the infrared-to-ultraviolet versus ultraviolet spectral slope correlation. Early-type galaxies, exhibiting low star formation rates and high optical surface brightnesses, have the most discrepant infrared-to-ultraviolet correlation. These results suggest that the star formation history may be the dominant regulator of the broadband spectral variations between galaxies. Finally, a new discovery shows that the 24 μm morphology can be a useful tool for parameterizing the global dust temperature and ultraviolet extinction in nearby galaxies. The dust emission in dwarf/irregular galaxies is clumpy and warm accompanied by low ultraviolet extinction, while in spiral galaxies there is typically a much larger diffuse component of cooler dust and average ultraviolet extinction. For galaxies with nuclear 24 μm emission, the dust temperature and ultraviolet extinction are relatively high compared to disk galaxies.


The Astrophysical Journal | 2011

The Spitzer-WISE Survey of the Ecliptic Poles

T. H. Jarrett; Martin Cohen; Frank J. Masci; Edward L. Wright; Daniel Stern; Dominic J. Benford; A. W. Blain; Sean J. Carey; Roc Michael Cutri; Peter R. M. Eisenhardt; Carol J. Lonsdale; A. Mainzer; Kenneth A. Marsh; Deborah Lynne Padgett; S. Petty; Michael E. Ressler; M. F. Skrutskie; S. A. Stanford; Jason A. Surace; C. W. Tsai; S. Wheelock; D. L. Yan

We have carried out a survey of the north and south ecliptic poles, EP-N and EP-S, respectively, with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE). The primary objective was to cross-calibrate WISE with the Spitzer and Midcourse Space Experiment (MSX) photometric systems by developing a set of calibration stars that are common to these infrared missions. The ecliptic poles were continuous viewing zones for WISE due to its polar-crossing orbit, making these areas ideal for both absolute and internal calibrations. The Spitzer IRAC and MIPS imaging survey covers a complete area of 0.40 deg^2 for the EP-N and 1.28 deg^2 for the EP-S. WISE observed the whole sky in four mid-infrared bands, 3.4, 4.6, 12, and 22 μm, during its eight-month cryogenic mission, including several hundred ecliptic polar passages; here we report on the highest coverage depths achieved by WISE, an area of ~1.5 deg^2 for both poles. Located close to the center of the EP-N, the Sy-2 galaxy NGC 6552 conveniently functions as a standard calibrator to measure the red response of the 22 μm channel of WISE. Observations from Spitzer-IRAC/MIPS/IRS-LL and WISE show that the galaxy has a strong red color in the mid-infrared due to star-formation and the presence of an active galactic nucleus (AGN), while over a baseline >1 year the mid-IR photometry of NGC 6552 is shown to vary at a level less than 2%. Combining NGC 6552 with the standard calibrator stars, the achieved photometric accuracy of the WISE calibration, relative to the Spitzer and MSX systems, is 2.4%, 2.8%, 4.5%, and 5.7% for W1 (3.4 μm), W2 (4.6 μm), W3 (12 μm), and W4 (22 μm), respectively. The WISE photometry is internally stable to better than 0.1% over the cryogenic lifetime of the mission. The secondary objective of the Spitzer-WISE Survey was to explore the poles at greater flux-level depths, exploiting the higher angular resolution Spitzer observations and the exceptionally deep (in total coverage) WISE observations that potentially reach down to the confusion limit of the survey. The rich Spitzer and WISE data sets were used to study the Galactic and extragalactic populations through source counts, color-magnitude and color-color diagrams. As an example of what the data sets facilitate, we have separated stars from galaxies, delineated normal galaxies from power-law-dominated AGNs, and reported on the different fractions of extragalactic populations. In the EP-N, we find an AGN source density of ~260 deg^(–2) to a 12 μm depth of 115 μJy, representing 15% of the total extragalactic population to this depth, similar to what has been observed for low-luminosity AGNs in other fields.


The Astrophysical Journal | 2012

Mid-infrared Selection of Active Galactic Nuclei with the Wide-Field Infrared Survey Explorer. I. Characterizing WISE-selected Active Galactic Nuclei in COSMOS

Daniel Stern; Roberto J. Assef; Dominic J. Benford; A. W. Blain; Roc Michael Cutri; Arjun Dey; Peter R. M. Eisenhardt; Roger L. Griffith; T. H. Jarrett; Sean Lake; Frank J. Masci; Sara Petty; S. A. Stanford; Chao-Wei Tsai; E. L. Wright; Lin Yan; Fiona A. Harrison; Kristin K. Madsen

The Wide-field Infrared Survey Explorer (WISE) is an extremely capable and efficient black hole finder. We present a simple mid-infrared color criterion, W1-W2 \geq 0.8 (i.e., [3.4]-[4.6] \geq 0.8, Vega), which identifies 61.9 \pm 5.4 AGN candidates per deg2 to a depth of W2 = 15.0. This implies a much larger census of luminous AGN than found by typical wide-area surveys, attributable to the fact that mid-infrared selection identifies both unobscured (type 1) and obscured (type 2) AGN. Optical and soft X-ray surveys alone are highly biased towards only unobscured AGN, while this simple WISE selection likely identifies even heavily obscured, Compton-thick AGN. Using deep, public data in the COSMOS field, we explore the properties of WISE-selected AGN candidates. At the mid-infrared depth considered, 160 uJy at 4.6 microns, this simple criterion identifies 78% of Spitzer mid-infrared AGN candidates according to the criteria of Stern et al. (2005) and the reliability is 95%. We explore the demographics, multiwavelength properties and redshift distribution of WISE-selected AGN candidates in the COSMOS field.

Collaboration


Dive into the T. H. Jarrett's collaboration.

Top Co-Authors

Avatar

Roc Michael Cutri

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lee Armus

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol J. Lonsdale

National Radio Astronomy Observatory

View shared research outputs
Top Co-Authors

Avatar

Stephen E. Schneider

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter R. M. Eisenhardt

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Frank J. Masci

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Karl D. Gordon

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

George Helou

Jet Propulsion Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge