Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. J. Pearson is active.

Publication


Featured researches published by T. J. Pearson.


Monthly Notices of the Royal Astronomical Society | 2014

Time correlation between the radio and gamma-ray activity in blazars and the production site of the gamma-ray emission

W. Max-Moerbeck; T. Hovatta; J. L. Richards; O. G. King; T. J. Pearson; Anthony C. S. Readhead; R. Reeves; M. C. Shepherd; Mary Ann Stevenson; E. Angelakis; L. Fuhrmann; Keith Grainge; V. Pavlidou; Roger W. Romani; J. A. Zensus

In order to determine the location of the gamma-ray emission site in blazars, we investigate the time-domain relationship between their radio and gamma-ray emission. Light curves for the brightest detected blazars from the first 3 yr of the mission of the Fermi Gamma-ray Space Telescope are cross-correlated with 4 yr of 15 GHz observations from the Owens Valley Radio Observatory 40 m monitoring programme. The large sample and long light-curve duration enable us to carry out a statistically robust analysis of the significance of the cross-correlations, which is investigated using Monte Carlo simulations including the uneven sampling and noise properties of the light curves. Modelling the light curves as red noise processes with power-law power spectral densities, we find that only one of 41 sources with high-quality data in both bands shows correlations with significance larger than 3σ (AO 0235+164), with only two more larger than even 2.25σ (PKS 1502+106 and B2 2308+34). Additionally, we find correlated variability in Mrk 421 when including a strong flare that occurred in 2012 July–September. These results demonstrate very clearly the difficulty of measuring statistically robust multiwavelength correlations and the care needed when comparing light curves even when many years of data are used. This should be a caution. In all four sources, the radio variations lag the gamma-ray variations, suggesting that the gamma-ray emission originates upstream of the radio emission. Continuous simultaneous monitoring over a longer time period is required to obtain high significance levels in cross-correlations between gamma-ray and radio variability in most blazars.


Monthly Notices of the Royal Astronomical Society | 2015

RoboPol: First season rotations of optical polarization plane in blazars

D. Blinov; V. Pavlidou; I. Papadakis; S. Kiehlmann; G. V. Panopoulou; I. Liodakis; O. G. King; E. Angelakis; M. Baloković; H. K. Das; R. Feiler; L. Fuhrmann; T. Hovatta; P. Khodade; A. Kus; N. Kylafis; Ashish A. Mahabal; I. Myserlis; D. Modi; B. Pazderska; E. Pazderski; I. Papamastorakis; T. J. Pearson; C. Rajarshi; A. N. Ramaprakash; P. Reig; Anthony C. S. Readhead; K. Tassis; J. A. Zensus

We present first results on polarization swings in optical emission of blazars obtained by RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events. A possible connection of polarization swing events with periods of high activity in gamma-rays is investigated using the data set obtained during the first season of operation. It was found that the brightest gamma-ray flares tend to be located closer in time to rotation events, which may be an indication of two separate mechanisms responsible for the rotations. Blazars with detected rotations during non-rotating periods have significantly larger amplitude and faster variations of polarization angle than blazars without rotations. Our simulations show that the full set of observed rotations is not a likely outcome (probability ≤1.5 × 10^(−2)) of a random walk of the polarization vector simulated by a multicell model. Furthermore, it is highly unlikely (∼5 × 10^(−5)) that none of our rotations is physically connected with an increase in gamma-ray activity.


Astronomy and Astrophysics | 2012

Radio-to-[gamma]-ray monitoring of the narrow-line Seyfert 1 galaxy PMN J0948+0022 from 2008 to 2011

L. Foschini; E. Angelakis; L. Fuhrmann; Gabriele Ghisellini; T. Hovatta; A. Lähteenmäki; M. L. Lister; V. Braito; Luigi C. Gallo; T. S. Hamilton; M. Kino; Stefanie Komossa; A. B. Pushkarev; D. J. Thompson; O. Tibolla; A. Tramacere; Alberto Carraminana; L. Carrasco; A. Falcone; M. Giroletti; Dirk Grupe; Y. Y. Kovalev; T. P. Krichbaum; W. Max-Moerbeck; I. Nestoras; T. J. Pearson; A. Porras; A. C. S. Readhead; E. Recillas; J. L. Richards

We present more than three years of observations at different frequencies, from radio to high-energy γ-rays, of the Narrow-Line Seyfert 1 (NLS1) Galaxy PMN J0948+0022 (z = 0.585). This source is the first NLS1 detected at energies above 100 MeV and therefore can be considered the prototype of this emerging new class of γ-ray emitting active galactic nuclei (AGN). The observations performed from 2008 August 1 to 2011 December 31 confirmed that PMN J0948+0022 generates a powerful relativistic jet, which is able to develop an isotropic luminosity at γ-rays of the order of 10 48 erg s −1 , at the level of powerful quasars. The evolution of the radiation emission of this source in 2009 and 2010 followed the canonical expectations of relativistic jets with correlated multiwavelength variability (γ-rays followed by radio emission after a few months), but it was difficult to retrieve a similar pattern in the light curves of 2011. The comparison of γ-ray spectra before and including 2011 data suggested that there was a softening of the highenergy spectral slope. We selected five specific epochs to be studied by modelling the broad-band spectrum, which are characterised by an outburst at γ-rays or very low/high flux at other wavelengths. The observed variability can largely be explained by changes in the injected power, the bulk Lorentz factor of the jet, or the electron spectrum. The characteristic time scale of doubling/halving flux ranges from a few days to a few months, depending on the frequency and the sampling rate. The shortest doubling time scale at γ-rays is 2.3 ± 0.5 days. These small values underline the need of highly sampled multiwavelength campaigns to better understand the physics of these sources.


Monthly Notices of the Royal Astronomical Society | 2014

A method for the estimation of the significance of cross-correlations in unevenly sampled red-noise time series

W. Max-Moerbeck; J. L. Richards; T. Hovatta; V. Pavlidou; T. J. Pearson; Anthony C. S. Readhead

We present a practical implementation of a Monte Carlo method to estimate the significance of cross-correlations in unevenly sampled time series of data, whose statistical properties are modelled with a simple power-law power spectral density. This implementation builds on published methods; we introduce a number of improvements in the normalization of the cross-correlation function estimate and a bootstrap method for estimating the significance of the cross-correlations. A closely related matter is the estimation of a model for the light curves, which is critical for the significance estimates. We present a graphical and quantitative demonstration that uses simulations to show how common it is to get high cross-correlations for unrelated light curves with steep power spectral densities. This demonstration highlights the dangers of interpreting them as signs of a physical connection. We show that by using interpolation and the Hanning sampling window function we are able to reduce the effects of red-noise leakage and to recover steep simple power-law power spectral densities. We also introduce the use of a Neyman construction for the estimation of the errors in the power-law index of the power spectral density. This method provides a consistent way to estimate the significance of cross-correlations in unevenly sampled time series of data.


Monthly Notices of the Royal Astronomical Society | 2014

The RoboPol pipeline and control system

O. G. King; D. Blinov; A. N. Ramaprakash; I. Myserlis; E. Angelakis; M. Baloković; R. Feiler; L. Fuhrmann; T. Hovatta; P. Khodade; A. Kougentakis; N. Kylafis; A. Kus; D. Modi; E. Paleologou; G. V. Panopoulou; I. Papadakis; I. Papamastorakis; G. Paterakis; V. Pavlidou; B. Pazderska; E. Pazderski; T. J. Pearson; C. Rajarshi; Anthony C. S. Readhead; P. Reig; A. Steiakaki; K. Tassis; J. A. Zensus

We describe the data reduction pipeline and control system for the RoboPol project. The RoboPol project is monitoring the optical R-band magnitude and linear polarization of a large sample of active galactic nuclei that is dominated by blazars. The pipeline calibrates and reduces each exposure frame, producing a measurement of the magnitude and linear polarization of every source in the 13u2009arcmin × 13u2009arcmin field of view. The control system combines a dynamic scheduler, real-time data reduction, and telescope automation to allow high-efficiency unassisted observations.


Monthly Notices of the Royal Astronomical Society | 2014

The RoboPol optical polarization survey of gamma-ray-loud blazars

V. Pavlidou; E. Angelakis; I. Myserlis; D. Blinov; O. G. King; I. Papadakis; K. Tassis; T. Hovatta; B. Pazderska; E. Paleologou; M. Baloković; R. Feiler; L. Fuhrmann; P. Khodade; A. Kus; N. Kylafis; D. Modi; G. V. Panopoulou; I. Papamastorakis; E. Pazderski; T. J. Pearson; C. Rajarshi; A. N. Ramaprakash; Anthony C. S. Readhead; P. Reig; J. A. Zensus

We present first results from RoboPol, a novel-design optical polarimeter operating at the Skinakas Observatory in Crete. The data, taken during the 2013 May–June commissioning of the instrument, constitute a single-epoch linear polarization survey of a sample of gamma-ray-loud blazars, defined according to unbiased and objective selection criteria, easily reproducible in simulations, as well as a comparison sample of, otherwise similar, gamma-ray-quiet blazars. As such, the results of this survey are appropriate for both phenomenological population studies and for tests of theoretical population models. We have measured polarization fractions as low as 0.015 down to R-mag of 17 and as low as 0.035 down to 18 mag. The hypothesis that the polarization fractions of gamma-ray-loud and gamma-ray-quiet blazars are drawn from the same distribution is rejected at the 3σ level. We therefore conclude that gamma-ray-loud and gamma-ray-quiet sources have different optical polarization properties. This is the first time this statistical difference is demonstrated in optical wavelengths. The polarization fraction distributions of both samples are well described by exponential distributions with averages of ⟨p⟩=6.4^(+0.9)_(−0.8)×10^(−2) for gamma-ray-loud blazars, and ⟨p⟩=3.2^(+2.0)_(−1.1)×10^(−2) for gamma-ray-quiet blazars. The most probable value for the difference of the means is 3.4^(+1.5)_(−2.0)×10^(−2). The distribution of polarization angles is statistically consistent with being uniform.


Monthly Notices of the Royal Astronomical Society | 2016

RoboPol: do optical polarization rotations occur in all blazars?

D. Blinov; V. Pavlidou; I. Papadakis; S. Kiehlmann; I. Liodakis; G. V. Panopoulou; T. J. Pearson; E. Angelakis; M. Baloković; T. Hovatta; V. Joshi; O. G. King; A. Kus; N. Kylafis; Ashish A. Mahabal; A. Marecki; I. Myserlis; E. Paleologou; I. Papamastorakis; E. Pazderski; S. Prabhudesai; A. N. Ramaprakash; Anthony C. S. Readhead; P. Reig; K. Tassis; J. A. Zensus

We present a new set of optical polarization plane rotations in blazars, observed during the third year of operation of RoboPol. The entire set of rotation events discovered during three years of observations is analysed with the aim of determining whether these events are inherent in all blazars. It is found that the frequency of the polarization plane rotations varies widely among blazars. This variation cannot be explained either by a difference in the relativistic boosting or by selection effects caused by a difference in the average fractional polarization. We conclude that the rotations are characteristic of a subset of blazars and that they occur as a consequence of their intrinsic properties.


Monthly Notices of the Royal Astronomical Society | 2015

Optical polarization map of the Polaris Flare with RoboPol

G. V. Panopoulou; K. Tassis; D. Blinov; V. Pavlidou; O. G. King; E. Paleologou; A. N. Ramaprakash; E. Angelakis; M. Baloković; H. K. Das; R. Feiler; T. Hovatta; P. Khodade; S. Kiehlmann; A. Kus; N. Kylafis; I. Liodakis; Ashish A. Mahabal; D. Modi; I. Myserlis; I. Papadakis; I. Papamastorakis; B. Pazderska; E. Pazderski; T. J. Pearson; C. Rajarshi; Anthony C. S. Readhead; P. Reig; J. A. Zensus

The stages before the formation of stars in molecular clouds are poorly understood. Insights can be gained by studying the properties of quiescent clouds, such as their magnetic field structure. The plane-of-the-sky orientation of the field can be traced by polarized starlight. We present the first extended, wide-field (∼10 deg^2) map of the Polaris Flare cloud in dust-absorption induced optical polarization of background stars, using the Robotic Polarimeter (RoboPol) polarimeter at the Skinakas Observatory. This is the first application of the wide-field imaging capabilities of RoboPol. The data were taken in the R band and analysed with the automated reduction pipeline of the instrument. We present in detail optimizations in the reduction pipeline specific to wide-field observations. Our analysis resulted in reliable measurements of 641 stars with median fractional linear polarization 1.3u2009peru2009cent. The projected magnetic field shows a large-scale ordered pattern. At high longitudes it appears to align with faint striations seen in the Herschel-Spectral and Photometric Imaging Receiver (SPIRE) map of dust emission (250 μm), while in the central 4–5 deg^2 it shows an eddy-like feature. The overall polarization pattern we obtain is in good agreement with large-scale measurements by Planck of the dust emission polarization in the same area of the sky.


Monthly Notices of the Royal Astronomical Society | 2014

Early-time polarized optical light curve of GRB 131030A

O. G. King; D. Blinov; Dimitrios Giannios; I. Papadakis; E. Angelakis; M. Baloković; L. Fuhrmann; T. Hovatta; P. Khodade; S. Kiehlmann; N. Kylafis; A. Kus; I. Myserlis; D. Modi; G. V. Panopoulou; I. Papamastorakis; V. Pavlidou; B. Pazderska; E. Pazderski; T. J. Pearson; C. Rajarshi; A. N. Ramaprakash; Anthony C. S. Readhead; P. Reig; K. Tassis; J. A. Zensus

We report the polarized optical light curve of a gamma-ray burst afterglow obtained using the RoboPol instrument. Observations began 655 s after the initial burst of gamma-rays from GRB 131030A, and continued uninterrupted for 2 h. The afterglow displayed a low, constant fractional linear polarization of p = (2.1 ± 1.6) per cent throughout, which is similar to the interstellar polarization measured on nearby stars. The optical brightness decay is consistent with a forward-shock propagating in a medium of constant density, and the low polarization fraction indicates a disordered magnetic field in the shock front. This supports the idea that the magnetic field is amplified by plasma instabilities on the shock front. These plasma instabilities produce strong magnetic fields with random directions on scales much smaller than the total observable region of the shock, and the resulting randomly-oriented polarization vectors sum to produce a low net polarization over the total observable region of the shock.


Advances in Space Research | 2000

The Pearson-Readhead Survey from Space

R. A. Preston; S.J. Tingay; David W. Murphy; David L. Meier; T. J. Pearson; Anthony C. S. Readhead; Hisashi Hirabayashi; H. Kobayashi; Makoto Inoue; B. G. Piner

Abstract The VSOP Space VLBI mission uses the HALCA spacecraft, launched from Japan in February 1997, in conjunction with ground radio observatories around the world to create a high resolution radio-wavelength imaging facility. We are using this unique facility to observe a complete sample of Pearson-Readhead Survey sources (Pearson and Readhead 1988) at 4.8 GHz, to determine core brightness temperatures and pc-scale jet properties. In addition we are obtaining matched-resolution 15 GHz observations using the VLBA at epochs close in time to the space VLBI observations to investigate the spectral indices of these sources at high resolution.

Collaboration


Dive into the T. J. Pearson's collaboration.

Top Co-Authors

Avatar

Anthony C. S. Readhead

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

O. G. King

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Baloković

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge