T. Julitta
University of Milano-Bicocca
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. Julitta.
Global Change Biology | 2015
Uwe Rascher; Luis Alonso; Andreas Burkart; C. Cilia; Sergio Cogliati; Roberto Colombo; Alexander Damm; Matthias Drusch; Luis Guanter; J. Hanus; T. Hyvärinen; T. Julitta; J. Jussila; K. Kataja; P. Kokkalis; S. Kraft; Thorsten Kraska; Maria Matveeva; J. Moreno; Onno Muller; M. Pikl; Francisco Pinto; L. Prey; Ralf Pude; Micol Rossini; Anke Schickling; Ulrich Schurr; D. Schüttemeyer; Jochem Verrelst; F. Zemek
Variations in photosynthesis still cause substantial uncertainties in predicting photosynthetic CO2 uptake rates and monitoring plant stress. Changes in actual photosynthesis that are not related to greenness of vegetation are difficult to measure by reflectance based optical remote sensing techniques. Several activities are underway to evaluate the sun-induced fluorescence signal on the ground and on a coarse spatial scale using space-borne imaging spectrometers. Intermediate-scale observations using airborne-based imaging spectroscopy, which are critical to bridge the existing gap between small-scale field studies and global observations, are still insufficient. Here we present the first validated maps of sun-induced fluorescence in that critical, intermediate spatial resolution, employing the novel airborne imaging spectrometer HyPlant. HyPlant has an unprecedented spectral resolution, which allows for the first time quantifying sun-induced fluorescence fluxes in physical units according to the Fraunhofer Line Depth Principle that exploits solar and atmospheric absorption bands. Maps of sun-induced fluorescence show a large spatial variability between different vegetation types, which complement classical remote sensing approaches. Different crop types largely differ in emitting fluorescence that additionally changes within the seasonal cycle and thus may be related to the seasonal activation and deactivation of the photosynthetic machinery. We argue that sun-induced fluorescence emission is related to two processes: (i) the total absorbed radiation by photosynthetically active chlorophyll; and (ii) the functional status of actual photosynthesis and vegetation stress.
Geophysical Research Letters | 2015
Micol Rossini; L. Nedbal; Luis Guanter; A. Ač; Luis Alonso; Andreas Burkart; Sergio Cogliati; Roberto Colombo; Alexander Damm; Matthias Drusch; J. Hanus; R. Janoutova; T. Julitta; P. Kokkalis; J. Moreno; J. Novotny; Francisco Pinto; Anke Schickling; D. Schüttemeyer; F. Zemek; Uwe Rascher
Remote estimation of Sun-induced chlorophyll fluorescence emitted by terrestrial vegetation can provide an unparalleled opportunity to track spatiotemporal variations of photosynthetic efficiency. Here we provide the first direct experimental evidence that the two peaks of the chlorophyll fluorescence spectrum can be accurately mapped from high-resolution radiance spectra and that the signal is linked to variations in actual photosynthetic efficiency. Red and far red fluorescence measured using a novel airborne imaging spectrometer over a grass carpet treated with an herbicide known to inhibit photosynthesis was significantly higher than the corresponding signal from an equivalent untreated grass carpet. The reflectance signal of the two grass carpets was indistinguishable, confirming that the fast dynamic changes in fluorescence emission were related to variations in the functional status of actual photosynthesis induced by herbicide application. Our results from a controlled experiment at the local scale illustrate the potential for the global mapping of terrestrial photosynthesis through space-borne measurements of chlorophyll fluorescence.
Environmental Research Letters | 2013
Marta Galvagno; Georg Wohlfahrt; Edoardo Cremonese; Micol Rossini; Roberto Colombo; Gianluca Filippa; T. Julitta; Giovanni Manca; Consolata Siniscalco; U. Morra di Cella; Mirco Migliavacca
Changes in snow cover depth and duration predicted by climate change scenarios are expected to strongly affect high-altitude ecosystem processes. This study investigates the effect of an exceptionally short snow season on the phenology and carbon dioxide source/sink strength of a subalpine grassland. An earlier snowmelt of more than one month caused a considerable advancement (40 days) of the beginning of the carbon uptake period (CUP) and, together with a delayed establishment of the snow season in autumn, contributed to a two-month longer CUP. The combined effect of the shorter snow season and the extended CUP led to an increase of about 100% in annual carbon net uptake. Nevertheless, the unusual environmental conditions imposed by the early snowmelt led to changes in canopy structure and functioning, with a reduction of the carbon sequestration rate during the snow-free period.
International Journal of Applied Earth Observation and Geoinformation | 2014
Micol Rossini; Mirco Migliavacca; Marta Galvagno; Michele Meroni; Sergio Cogliati; Edoardo Cremonese; Francesco Fava; Anatoly A. Gitelson; T. Julitta; Umberto Morra di Cella; Consolata Siniscalco; Roberto Colombo
a b s t r a c t Different models driven by remotely sensed vegetation indexes (VIs) and incident photosynthetically active radiation (PAR) were developed to estimate gross primary production (GPP) in a subalpine grass- land equipped with an eddy covariance flux tower. Hyperspectral reflectance was collected using an automatic system designed for high temporal frequency acquisitions for three consecutive years, includ- ing one (2011) characterized by a strong reduction of the carbon sequestration rate during the vegetative season. Models based on remotely sensed and meteorological data were used to estimate GPP, and a cross-validation approach was used to compare the predictive capabilities of different model formula- tions. Vegetation indexes designed to be more sensitive to chlorophyll content explained most of the variability in GPP in the ecosystem investigated, characterized by a strong seasonal dynamic. Model performances improved when including also PARpotential defined as the maximal value of incident PAR under clear sky conditions in model formulations. Best performing models are based entirely on remotely sensed data. This finding could contribute to the development of methods for quantifying the temporal variation of GPP also on a broader scale using current and future satellite sensors.
Remote Sensing | 2016
Micol Rossini; Michele Meroni; Marco Celesti; Sergio Cogliati; T. Julitta; Uwe Rascher; Christiaan van der Tol; Roberto Colombo
Sun-induced canopy chlorophyll fluorescence in both the red (FR) and far-red (FFR) regions was estimated across a range of temporal scales and a range of species from different plant functional types using high resolution radiance spectra collected on the ground. Field measurements were collected with a state-of-the-art spectrometer setup and standardized methodology. Results showed that different plant species were characterized by different fluorescence magnitude. In general, the highest fluorescence emissions were measured in crops followed by broadleaf and then needleleaf species. Red fluorescence values were generally lower than those measured in the far-red region due to the reabsorption of FR by photosynthetic pigments within the canopy layers. Canopy chlorophyll fluorescence was related to plant photosynthetic capacity, but also varied according to leaf and canopy characteristics, such as leaf chlorophyll concentration and Leaf Area Index (LAI). Results gathered from field measurements were compared to radiative transfer model simulations with the Soil-Canopy Observation of Photochemistry and Energy fluxes (SCOPE) model. Overall, simulation results confirmed a major contribution of leaf chlorophyll concentration and LAI to the fluorescence signal. However, some discrepancies between simulated and experimental data were found in broadleaf species. These discrepancies may be explained by uncertainties in individual species LAI estimation in mixed forests or by the effect of other model parameters and/or model representation errors. This is the first study showing sun-induced fluorescence experimental data on the variations in the two emission regions and providing quantitative information about the absolute magnitude of fluorescence emission from a range of vegetation types.
Remote Sensing | 2016
T. Julitta; Lawrence A. Corp; Micol Rossini; Andreas Burkart; Sergio Cogliati; Neville Davies; Milton Hom; Alasdair Mac Arthur; Elizabeth M. Middleton; Uwe Rascher; Anke Schickling; Roberto Colombo
Remote Sensing of Sun-Induced Chlorophyll Fluorescence (SIF) is a research field of growing interest because it offers the potential to quantify actual photosynthesis and to monitor plant status. New satellite missions from the European Space Agency, such as the Earth Explorer 8 FLuorescence EXplorer (FLEX) mission—scheduled to launch in 2022 and aiming at SIF mapping—and from the National Aeronautics and Space Administration (NASA) such as the Orbiting Carbon Observatory-2 (OCO-2) sampling mission launched in July 2014, provide the capability to estimate SIF from space. The detection of the SIF signal from airborne and satellite platform is difficult and reliable ground level data are needed for calibration/validation. Several commercially available spectroradiometers are currently used to retrieve SIF in the field. This study presents a comparison exercise for evaluating the capability of four spectroradiometers to retrieve SIF. The results show that an accurate far-red SIF estimation can be achieved using spectroradiometers with an ultrafine resolution (less than 1 nm), while the red SIF estimation requires even higher spectral resolution (less than 0.5 nm). Moreover, it is shown that the Signal to Noise Ratio (SNR) plays a significant role in the precision of the far-red SIF measurements.
Optics Express | 2013
Karen Anderson; Micol Rossini; Javier Pacheco-Labrador; Manuela Balzarolo; A. Mac Arthur; Francesco Fava; T. Julitta; L. Vescovo
We describe the results of an experiment designed to compare the radiometric performance of four different spectroradiometers in ideal field conditions. A carefully designed experiment where instruments were simultaneously triggered was used to measure the Hemispherical Conical Reflectance Factors (HCRF) of four targets of varying reflectance. The experiment was in two parts. Stage 1 covered a 2 hour period finishing at solar noon, where 50 measurements of the targets were collected in sequence. Stage 2 comprised 10 rapid sequential measurements over each target. We applied a method for normalising full width half maximum (FWHM) differences between the instruments, which was a source of variability in the raw data. The work allowed us to determine data reproducibility, and we found that lower-cost instruments (Ocean Optics and PP Systems) produced data of similar radiometric quality to those manufactured by Analytical Spectral Devices (ASD -here we used the ASD FieldSpec Pro) in the spectral range 400-850 nm, which is the most significant region for research communities interested in measuring vegetation dynamics. Over the longer time-series there were changes in HCRF caused by the structural and spectral characteristics of some targets.
IEEE Sensors Journal | 2015
Andreas Burkart; Anke Schickling; Maria Pilar Cendrero Mateo; Thomas J. Wrobel; Micol Rossini; Sergio Cogliati; T. Julitta; Uwe Rascher
Measurements of sun-induced chlorophyll fluorescence (SIF) over plant canopies provide a proxy for plant photosynthetic capacity and are of high interest for plant research. Together with spectral reflectance, SIF has the potential to act as a noninvasive approach to quantify photosynthetic plant traits from field to air and spaceborne scales. However, SIF is a small signal contribution to the reflected sunlight and often not distinguishable from sensor noise. SIF estimation is, therefore, affected by an unquantified uncertainty, making it difficult to estimate accurately how much SIF is truly emitted from the plant. To investigate and overcome this, we designed a device based on a spectrometer covering the visible range and equipped it with an LED emitting at the wavelength of SIF. Using this as a reference and applying thorough calibrations, we present consistent evidence of the instruments capability of SIF retrieval and accuracy estimations. The LEDs intensity was measured under sunlight with 1.27 ± 0.27 mW × sr-1m-2nm-1 stable over the day. The large increase of SIF due to the Kautsky effect was measured spectrally and temporally proving the biophysical origin of the signal. We propose rigorous tests for instruments intended to measure SIF and show ways to further improve the presented methods.
international geoscience and remote sensing symposium | 2012
Sergio Cogliati; Roberto Colombo; Micol Rossini; Michele Meroni; T. Julitta
Sun-induced chlorophyll fluorescence (Fs) is a weak signal over imposed to the radiance reflected by vegetation. Several algorithms are currently available in literature to retrieve fluorescence from high spectral resolution data. This contribution shows a comparison of different Fs retrieval techniques exploiting: i) ground-based measurements at fine and ultrafine spectral resolution; ii) airborne hyperspectral imagery. Performance analysis of the different methods is done analyzing the coefficient of variation of diurnal measurements collected over a fixed sampled area. Fraunhofer Line Depth (FLD) and Spectral Fitting Methods (SFM) are evaluated using both fine and ultrafine resolution data. Results show that ultrafine resolution data coupled to advanced retrieval techniques, like SFM, strongly reduce errors in Fs. The Fs values calculated from hyperspectral airborne data are in agreement with ground measurements.
Global Change Biology | 2018
Roberto Colombo; Marco Celesti; Remo Bianchi; Petya K. E. Campbell; Sergio Cogliati; Bruce D. Cook; Lawrence A. Corp; Alexander Damm; Jean-Christophe Domec; Luis Guanter; T. Julitta; Elizabeth M. Middleton; Asko Noormets; Francisco Pinto; Uwe Rascher; Micol Rossini; Anke Schickling
Leaf fluorescence can be used to track plant development and stress, and is considered the most direct measurement of photosynthetic activity available from remote sensing techniques. Red and far-red sun-induced chlorophyll fluorescence (SIF) maps were generated from high spatial resolution images collected with the HyPlant airborne spectrometer over even-aged loblolly pine plantations in North Carolina (United States). Canopy fluorescence yield (i.e., the fluorescence flux normalized by the light absorbed) in the red and far-red peaks was computed. This quantifies the fluorescence emission efficiencies that are more directly linked to canopy function compared to SIF radiances. Fluorescence fluxes and yields were investigated in relation to tree age to infer new insights on the potential of those measurements in better describing ecosystem processes. The results showed that red fluorescence yield varies with stand age. Young stands exhibited a nearly twofold higher red fluorescence yield than mature forest plantations, while the far-red fluorescence yield remained constant. We interpreted this finding in a context of photosynthetic stomatal limitation in aging loblolly pine stands. Current and future satellite missions provide global datasets of SIF at coarse spatial resolution, resulting in intrapixel mixture effects, which could be a confounding factor for fluorescence signal interpretation. To mitigate this effect, we propose a surrogate of the fluorescence yield, namely the Canopy Cover Fluorescence Index (CCFI) that accounts for the spatial variability in canopy structure by exploiting the vegetation fractional cover. It was found that spatial aggregation tended to mask the effective relationships, while the CCFI was still able to maintain this link. This study is a first attempt in interpreting the fluorescence variability in aging forest stands and it may open new perspectives in understanding long-term forest dynamics in response to future climatic conditions from remote sensing of SIF.