T. Kallinger
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. Kallinger.
Astronomy and Astrophysics | 2012
B. Mosser; M. J. Goupil; K. Belkacem; E. Michel; D. Stello; J. P. Marques; Y. Elsworth; C. Barban; P. G. Beck; Timothy R. Bedding; J. De Ridder; R. A. García; S. Hekker; T. Kallinger; R. Samadi; Martin C. Stumpe; Christopher J. Burke
Context. There are now more than 22 months of long-cadence data available for thousands of red giants observed with the Kepler space mission. Consequently, we are able to clearly resolve fine details in their oscillation spectra and see many components of the mixed modes that probe the stellar core. Aims. We report for the first time a parametric fit to the pattern of the � = 1 mixed modes in red giants, which is a powerful tool to identify gravity-dominated mixed modes. With these modes, which share the characteristics of pressure and gravity modes, we are able to probe directly the helium core and the surrounding shell where hydrogen is burning. Methods. We propose two ways for describing the so-called mode bumping that affects the frequencies of the mixed modes. Firstly, a phenomenological approach is used to describe the main features of the mode bumping. Alternatively, a quasi-asymptotic mixed-mode relation provides a powerful link between seismic observations and the stellar interior structure. We used period echelle diagrams to emphasize the detection of the gravity-dominated mixed modes. Results. The asymptotic relation for mixed modes is confirmed. It allows us to measure the gravity-mode period spacings in more than two hundred red giant stars. The identification of the gravity-dominated mixed modes allows us to complete the identification of all major peaks in a red giant oscillation spectrum, with significant consequences for the true identification of � = 3 modes, of � = 2 mixed modes, for the mode widths and amplitudes, and for the � = 1 rotational splittings. Conclusions. The accurate measurement of the gravity-mode period spacing provides an effective probe of the inner, g-mode cavity. The derived value of the coupling coefficient between the cavities is different for red giant branch and clump stars. This provides a probe of the hydrogen-shell burning region that surrounds the helium core. Core contraction as red giants ascend the red giant branch can be explored using the variation of the gravity-mode spacing as a function of the mean large separation.
Astronomy and Astrophysics | 2012
B. Mosser; Y. Elsworth; S. Hekker; D. Huber; T. Kallinger; S. Mathur; K. Belkacem; M. J. Goupil; R. Samadi; C. Barban; Timothy R. Bedding; W. J. Chaplin; R. A. García; D. Stello; J. De Ridder; Christopher K. Middour; Robert L. Morris; Elisa V. Quintana
Context. The space mission Kepler provides us with long and uninterrupted photometric time series of red giants. This allows us to examine their seismic global properties and to compare these with theoretical predictions. Aims. We aim to describe the oscillation power excess observed in red giant oscillation spectra with global seismic parameters, and to investigate empirical scaling relations governing these parameters. From these scalings relations, we derive new physical properties of red giant oscillations. Methods. Various different methods were compared in order to validate the processes and to derive reliable output values. For consistency, a single method was then used to determine scaling relations for the relevant global asteroseismic parameters: mean mode height, mean height of the background signal superimposed on the oscillation power excess, width of the power excess, bolometric amplitude of the radial modes and visibility of non-radial modes. A method for deriving oscillation amplitudes is proposed, which relies on the complete identification of the red giant oscillation spectrum. Results. The comparison of the different methods has shown the important role of the way the background is modelled. The convergence reached by the collaborative work enables us to derive significant results concerning the oscillation power excess. We obtain several scaling relations, and identify the influence of the stellar mass and the evolutionary status. The effect of helium burning on the red giant interior structure is confirmed: it yields a strong mass-radius relation for clump stars. We find that none of the amplitude scaling relations motivated by physical considerations predict the observed mode amplitudes of red giant stars. In parallel, the degree-dependent mode visibility exhibits important variations. Both effects seem related to the significant influence of the high mode mass of non-radial mixed modes. A family of red giants with very weak dipole modes is identified, and its properties are analyzed. Conclusions. The clear correlation between the power densities of the background signal and of the stellar oscillation induces important consequences to be considered for deriving a reliable theoretical relation of the mode amplitude. As a by-product of this work, we have verified that red giant asteroseismology delivers new insights for stellar and Galactic physics, given the evidence for mass loss at the tip of the red giant branch.
The Astrophysical Journal | 2011
S. Mathur; S. Hekker; Regner Trampedach; J. Ballot; T. Kallinger; Derek L. Buzasi; R. A. García; D. Huber; A. Jiménez; B. Mosser; Timothy R. Bedding; Y. Elsworth; C. Regulo; D. Stello; W. J. Chaplin; J. De Ridder; S. J. Hale; Karen Kinemuchi; Hans Kjeldsen; Fergal Mullally; Susan E. Thompson
The granulation pattern that we observe on the surface of the Sun is due to hot plasma rising to the photosphere where it cools down and descends back into the interior at the edges of granules. This is the visible manifestation of convection taking place in the outer part of the solar convection zone. Because red giants have deeper convection zones than the Sun, we cannot a priori assume that their granulation is a scaled version of solar granulation. Until now, neither observations nor one-dimensional analytical convection models could put constraints on granulation in red giants. With asteroseismology, this study can now be performed. We analyze ~1000 red giants that have been observed by Kepler during 13 months. We fit the power spectra with Harvey-like profiles to retrieve the characteristics of the granulation (timescale τgran and power P gran). We search for a correlation between these parameters and the global acoustic-mode parameter (the position of maximum power, νmax) as well as with stellar parameters (mass, radius, surface gravity (log g), and effective temperature (T eff)). We show that τeffν–0.89 max and P granν–1.90 max, which is consistent with the theoretical predictions. We find that the granulation timescales of stars that belong to the red clump have similar values while the timescales of stars in the red giant branch are spread in a wider range. Finally, we show that realistic three-dimensional simulations of the surface convection in stars, spanning the (T eff, log g) range of our sample of red giants, match the Kepler observations well in terms of trends.
The Astronomical Journal | 2013
Sz. Mészáros; Jon A. Holtzman; A. E. García Pérez; C. Allende Prieto; Ricardo P. Schiavon; Sarbani Basu; Dmitry Bizyaev; W. J. Chaplin; S. D. Chojnowski; Katia Cunha; Y. Elsworth; Courtney R. Epstein; Peter M. Frinchaboy; R. A. García; Frederick R. Hearty; S. Hekker; Jennifer A. Johnson; T. Kallinger; Lars Koesterke; Steven R. Majewski; Sarah L. Martell; David L. Nidever; Marc H. Pinsonneault; Julia O'Connell; Matthew Shetrone; Verne V. Smith; John C. Wilson; Gail Zasowski
The Sloan Digital Sky Survey III (SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a three-year survey that is collecting 105 high-resolution spectra in the near-IR across multiple Galactic populations. To derive stellar parameters and chemical compositions from this massive data set, the APOGEE Stellar Parameters and Chemical Abundances Pipeline (ASPCAP) has been developed. Here, we describe empirical calibrations of stellar parameters presented in the first SDSS-III APOGEE data release (DR10). These calibrations were enabled by observations of 559 stars in 20 globular and open clusters. The cluster observations were supplemented by observations of stars in NASAs Kepler field that have well determined surface gravities from asteroseismic analysis. We discuss the accuracy and precision of the derived stellar parameters, considering especially effective temperature, surface gravity, and metallicity; we also briefly discuss the derived results for the abundances of the α-elements, carbon, and nitrogen. Overall, we find that ASPCAP achieves reasonably accurate results for temperature and metallicity, but suffers from systematic errors in surface gravity. We derive calibration relations that bring the raw ASPCAP results into better agreement with independently determined stellar parameters. The internal scatter of ASPCAP parameters within clusters suggests that metallicities are measured with a precision better than 0.1 dex, effective temperatures better than 150 K, and surface gravities better than 0.2 dex. The understanding provided by the clusters and Kepler giants on the current accuracy and precision will be invaluable for future improvements of the pipeline.
Astronomy and Astrophysics | 2009
J. Debosscher; L. M. Sarro; M. López; M. Deleuil; Conny Aerts; Michel Auvergne; A. Baglin; F. Baudin; M. Chadid; S. Charpinet; J. Cuypers; J. De Ridder; R. Garrido; A.-M. Hubert; E. Janot-Pacheco; L. Jorda; A. Kaiser; T. Kallinger; Z. Kollath; C. Maceroni; P. Mathias; E. Michel; Claire Moutou; Coralie Neiner; M. Ollivier; R. Samadi; E. Solano; Christian Surace; B. Vandenbussche; W. W. Weiss
Context: Aims: In this work, we describe the pipeline for the fast supervised classification of light curves observed by the CoRoT exoplanet CCDs. We present the classification results obtained for the first four measured fields, which represent a one-year in-orbit operation. Methods: The basis of the adopted supervised classification methodology has been described in detail in a previous paper, as is its application to the OGLE database. Here, we present the modifications of the algorithms and of the training set to optimize the performance when applied to the CoRoT data. Results: Classification results are presented for the observed fields IRa01, SRc01, LRc01, and LRa01 of the CoRoT mission. Statistics on the number of variables and the number of objects per class are given and typical light curves of high-probability candidates are shown. We also report on new stellar variability types discovered in the CoRoT data. The full classification results are publicly available. The CoRoT space mission, launched on 27 December 2006, has been developed and is operated by the CNES, with the contribution of Austria, Belgium, Brazil , ESA, Germany, and Spain. The full classification results will be only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/506/519
Astronomy and Astrophysics | 2008
T. Kallinger; P. Reegen; W. W. Weiss
Context: Several approaches to estimate frequency, phase and amplitude errors in time series analyses were reported in the literature, but they are either time consuming to compute, grossly overestimating the error, or are based on empirically determined criteria. Aims: A simple, but realistic estimate of the frequency uncertainty in time series analyses. Methods: Synthetic data sets with mono- and multi-periodic harmonic signals and with randomly distributed amplitude, frequency and phase were generated and white noise added. We tried to recover the input parameters with classical Fourier techniques and investigated the error as a function of the relative level of noise, signal and frequency difference. Results: We present simple formulas for the upper limit of the amplitude, frequency and phase uncertainties in time-series analyses. We also demonstrate the possibility to detect frequencies which are separated by less than the classical frequency resolution and that the realistic frequency error is at least 4 times smaller than the classical frequency resolution.
Astronomy and Astrophysics | 2014
P. G. Beck; K. Hambleton; J. Vos; T. Kallinger; S. Bloemen; A. Tkachenko; R. A. García; Roy Ostensen; Conny Aerts; D. W. Kurtz; J. De Ridder; S. Hekker; K. Pavlovski; S. Mathur; K. De Smedt; A. Derekas; E. Corsaro; B. Mosser; H. Van Winckel; Daniel Huber; P. Degroote; G. R. Davies; Andrej Prsa; J. Debosscher; Y. Elsworth; P. Nemeth; Lionel Siess; V. S. Schmid; P. I. Pápics; B. L. de Vries
Context. The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to improved understanding of red giant stars and binary stars. Seismology allows us to constrain the properties of red giants. In addition to eclipsing binaries, eccentric non-eclipsing binaries that exhibit ellipsoidal modulations have been detected with Kepler. Aims. We aim to study the properties of eccentric binary systems containing a red giant star and to derive the parameters of the primary giant component. Methods. We applied asteroseismic techniques to determine the masses and radii of the primary component of each system. For a selected target, light and radial velocity curve modelling techniques were applied to extract the parameters of the system and its primary component. Stellar evolution and its effects on the evolution of the binary system were studied from theoretical models. Results. The paper presents the asteroseismic analysis of 18 pulsating red giants in eccentric binary systems, for which masses and radii were constrained. The orbital periods of these systems range from 20 to 440 days. The results of our ongoing radial velocity monitoring programme with the Hermes spectrograph reveal an eccentricity range of e= 0.2 to 0.76. As a case study we present a detailed analysis of KIC 5006817, whose rich oscillation spectrum allows for detailed seismic analysis. From seismology we constrain the rotational period of the envelope to be at least 165 d, which is roughly twice the orbital period. The stellar core rotates 13 times faster than the surface. From the spectrum and radial velocities we expect that the Doppler beaming signal should have a maximum amplitude of 300 ppm in the light curve. Fixing the mass and radius to the asteroseismically determined values, we find from our binary modelling a value of the gravity darkening exponent that is significantly larger than expected. Through binary modelling, we determine the mass of the secondary component to be 0.29± 0.03 M . Conclusions. For KIC 5006817 we exclude pseudo-synchronous rotation of the red giant with the orbit. The comparison of the results from seismology and modelling of the light curve shows a possible alignment of the rotational and orbital axis at the 2σ level. Red giant eccentric systems could be progenitors of cataclysmic variables and hot subdwarf B stars.Context. The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to improved understanding of red giant stars and binary stars. Seismology allows us to constrain the properties of red giants. In addition to eclipsing binaries, eccentric non-eclipsing binaries that exhibit ellipsoidal modulations have been detected with Kepler. Aims. We aim to study the properties of eccentric binary systems containing a red giant star and to derive the parameters of the primary giant component. Methods. We applied asteroseismic techniques to determine the masses and radii of the primary component of each system. For a selected target, light and radial velocity curve modelling techniques were applied to extract the parameters of the system and its primary component. Stellar evolution and its effects on the evolution of the binary system were studied from theoretical models. Results. The paper presents the asteroseismic analysis of 18 pulsating red giants in eccentric binary systems, for which masses and radii were constrained. The orbital periods of these systems range from 20 to 440 days. The results of our ongoing radial velocity monitoring programme with the Hermes spectrograph reveal an eccentricity range of e = 0.2 to 0.76. As a case study we present a detailed analysis of KIC 5006817, whose rich oscillation spectrum allows for detailed seismic analysis. From seismology we constrain the rotational period of the envelope to be at least 165 d, which is roughly twice the orbital period. The stellar core rotates 13 times faster than the surface. From the spectrum and radial velocities we expect that the Doppler beaming signal should have a maximum amplitude of 300 ppm in the light curve. Fixing the mass and radius to the asteroseismically determined values, we find from our binary modelling a value of the gravity darkening exponent that is significantly larger than expected. Through binary modelling, we determine the mass of the secondary component to be 0.29 ± 0.03 M� . Conclusions. For KIC 5006817 we exclude pseudo-synchronous rotation of the red giant with the orbit. The comparison of the results from seismology and modelling of the light curve shows a possible alignment of the rotational and orbital axis at the 2σ level. Red giant eccentric systems could be progenitors of cataclysmic variables and hot subdwarf B stars.
Astronomy and Astrophysics | 2014
T. Kallinger; J. De Ridder; S. Hekker; S. Mathur; B. Mosser; Michael Gruberbauer; R. A. García; C. Karoff; J. Ballot
Context. The long and almost continuous observations by Kepler show clear evidence of a granulation background signal in a large sample of stars, which is interpreted as the surface manifestation of convection. It has been shown that its characteristic timescale and rms intensity fluctuation scale with the peak frequency (νmax) of the solar-like oscillations. Various attempts have been made to quantify the observed signal, to determine scaling relations for its characteristic parameters, and to compare them to theoretical predictions. Even though they are consistent on a global scale, large systematic differences of an unknown origin remain between different methods, as well as between the observations and simulations. Aims. We aim to study different approaches to quantifying the signature of stellar granulation and to search for a unified model that reproduces the observed signal best in a wide variety of stars. We then aim to define empirical scaling relations between the granulation properties and νmax and various other stellar parameters. Methods. We use a probabilistic method to compare different approaches to extracting the granulation signal. We fit the power density spectra of a large set of Kepler targets, determine the granulation and global oscillation parameter, and quantify scaling relations between them. Results. We establish that a depression in power at about νmax/2, known from the Sun and a few other main-sequence stars, is also statistically significant in red giants and that a super-Lorentzian function with two components is best suited to reproducing the granulation signal in the broader vicinity of the pulsation power excess. We also establish that the specific choice of the background model can affect the determination of νmax, introducing systematic uncertainties that can significantly exceed the random uncertainties. We find the characteristic frequency (i.e., inverse timescale) and amplitude of both background components to tightly scale with νmax for a wide variety of stars (about 2–2000 μHz in νmax), and quantify a mass dependency of the latter. To enable comparison with theoretical predictions (which do not include the observed power depression), we computed effective timescales and bolometric intensity fluctuations and found them to approximately scale as τeff ∝ g −0.85 T −0.4 and Agran ∝ (g 2 M) −1/4 (or more conveniently R/M 3/4 ), respectively. Similarly, the bolometric pulsation amplitude scales approximately as Apuls ∝ (g 2 M) −1/3 (or R 4/3 /M), which implicitly verifies a separate mass and luminosity dependence of Apuls. We have also checked our scaling relations with solar reference values and find them in good agreement. Conclusions. We provide a thorough analysis of the granulation background signal in a large sample of stars, from which we establish a unified model that allows us to accurately extract the granulation and global oscillation parameter. The resulting scaling relations allow a simple estimate of the overall spectral shape of any solar-type oscillator and might serve as a starting point for future largesample studies or as a reference for theoretical modelling of granulation.
Astronomy and Astrophysics | 2015
C. Chiappini; Friedrich Anders; Thaíse S. Rodrigues; A. Miglio; J. Montalbán; B. Mosser; Léo Girardi; M. Valentini; A. Noels; Thierry Morel; Ivan Minchev; M. Steinmetz; B. Santiago; Mathias Schultheis; Marie Martig; L. N. da Costa; M. A. G. Maia; C. Allende Prieto; R. de Assis Peralta; S. Hekker; N. Themeßl; T. Kallinger; R. A. García; S. Mathur; F. Baudin; Timothy C. Beers; K. Cunha; Paul Harding; J. Holtzman; S. R. Majewski
We report the discovery of a group of apparently young CoRoT red-giant stars exhibiting enhanced [α/Fe] abundance ratios (as determined from APOGEE spectra) with respect to solar values. Their existence is not explained bystandard chemical evolution models of the Milky Way, and shows that the chemical-enrichment history of the Galactic disc is more complex. We find similar stars in previously published samples for which isochrone-ages could be reliably obtained, although in smaller relative numbers. This might explain why these stars have not previously received attention. The young [α/Fe]-rich stars are much more numerous in the CoRoT-APOGEE (CoRoGEE) inner-field sample than in any other high-resolution sample available at present because only CoRoGEE can explore the inner-disc regions and provide ages for its field stars. The kinematic properties of the young [α/Fe]-rich stars are not clearly thick-disc like, despite their rather large distances from the Galactic mid-plane. Our tentative interpretation of these and previous intriguing observations in the Milky Way is that these stars were formed close to the end of the Galactic bar, near corotation – a region where gas can be kept inert for longer times than in other regions that are more frequently shocked by the passage of spiral arms. Moreover, this is where the mass return from older inner-disc stellar generations is expected to be highest (according to an inside-out disc-formation scenario), which additionally dilutes the in-situ gas. Other possibilities to explain these observations (e.g., a recent gas-accretion event) are also discussed.
Astronomy and Astrophysics | 2012
T. Kallinger; S. Hekker; B. Mosser; J. De Ridder; Timothy R. Bedding; Y. Elsworth; M. Gruberbauer; David B. Guenther; D. Stello; Sarbani Basu; R. A. García; William J. Chaplin; Fergal Mullally; Martin Still; Susan E. Thompson
Context. The Kepler space mission is reaching continuous observing times long enough to also start studying the fine structure of the observed pressure-mode spectra. Aims. In this paper, we aim to study the signature of stellar evolut ion on the radial and pressure-dominated l = 2 modes in an ensemble of red giants that show solar-type oscillations. Methods. We use established methods to automatically identify the mode degree of l = 0 and 2 modes and measure the large (�νc) and small (δν02) frequency separation around the central radial mode. We then determine the phase shiftǫc of the central radial mode, i.e. the linear offset in the asymptotic fit to the acoustic modes. Furthermore w e measure the individual frequencies of radial modes and investigate their average curvature. Results. We find that ǫc is significantly di fferent for red giants at a given �νc but which burn only H in a shell (RGB) than those that have already ignited core He burning. Even though not directly probing the stellar core the pair of local seismic observa bles (�νc,ǫc) can be used as an evolutionary stage discriminator that turn ed out to be as reliable as the period spacing of the mixed dipole modes. We find a tight correlation between ǫc and �νc for RGB stars and unlike less evolved stars we find no indicati on thatǫc depends on other properties of the star. It appears that the difference inǫc between the two populations becomes smaller and eventually indistinguishable if we use an average of several radial orders, instead of a loc al, i.e. only around the central radial mode, large separati on to determine the phase shift. This indicates that the information on the e volutionary stage is encoded locally, more precisely in the shape of the radial mode sequence. This shape turns out to be approximately symmetric around the central radial mode for RGB stars but asymmetric for core He burning stars. We computed radial mode frequencies for a sequence of red-giant models and find them to qualitat ively confirm our findings. We also find that, at least in our models, t he local �ν is an at least as good and mostly better proxy for both the asymptotic spacing and the large separation scaled from the model density than the average �ν. Finally, we investigate the signature of the evolutionary stage onδν02 and quantify the mass dependency of this seismic parameter.