Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Krühler is active.

Publication


Featured researches published by T. Krühler.


Monthly Notices of the Royal Astronomical Society | 2015

Spectroscopy of superluminous supernova host galaxies: A preference of hydrogen-poor events for extreme emission line galaxies

G. Leloudas; S. Schulze; T. Krühler; Javier Gorosabel; Lise Christensen; Andrea Mehner; A. de Ugarte Postigo; R. Amorin; C. C. Thöne; J. P. Anderson; F. E. Bauer; Anna Gallazzi; K. G. Hełminiak; J. Hjorth; E. Ibar; Daniele Malesani; Nidia I. Morrell; Jozsef Vinko; J. C. Wheeler

Superluminous supernovae (SLSNe) were only discovered recently due to their preference for occurring in faint dwarf galaxies. Understanding why stellar evolution yields dierent types of stellar explosions in these environments is fundamental in order to both uncover the elusive progenitors of SLSNe and to study star formation in dwarf galaxies. In this paper, we present the rst results of our project to study SUperluminous Supernova Host galaxIES (SUSHIES), focusing on the sample for which we have obtained spectroscopy. We show that SLSNe-I and SLSNe-R (hydrogen-poor) often ( 50% in our sample) occur in a class of galaxies that is known as Extreme Emission Line Galaxies (EELGs). The probability of this happening by chance is negligible and we therefore conclude that the extreme environmental conditions and the SLSN phenomenon are related. In contrast, SLSNe-II (hydrogen-rich) occur in more massive, more metal-rich galaxies with softer radiation elds. Therefore, if SLSNe-II constitute a uniform class, their progenitor systems must be dierent from those of H-poor SLSNe. Gamma-ray bursts (GRBs) are, on average, not found in as extreme environments as H-poor SLSNe. We propose that H-poor SLSNe result from the very rst stars exploding in a starburst, even earlier than GRBs. This might indicate a bottom-light initial mass function in these systems. SLSNe present a novel method of selecting candidate EELGs independent of their luminosity.


Astronomy and Astrophysics | 2014

Spectroscopy of the short-hard GRB 130603B - The host galaxy and environment of a compact object merger

A. de Ugarte Postigo; C. C. Thöne; A. Rowlinson; R. García-Benito; Andrew J. Levan; Javier Gorosabel; P. Goldoni; S. Schulze; T. Zafar; K. Wiersema; R. Sánchez-Ramírez; Andrea Melandri; P. D’Avanzo; S. R. Oates; V. D’Elia; M. De Pasquale; T. Krühler; A. J. van der Horst; D. Xu; D. Watson; S. Piranomonte; S. D. Vergani; B. Milvang-Jensen; L. Kaper; Daniele Malesani; Johan Peter Uldall Fynbo; Z. Cano; S. Covino; H. Flores; F. Hammer

Context. Short duration gamma-ray bursts (SGRBs) are thought to be related to the violent merger of compact objects, such as neutron stars or black holes, which makes them promising sources of gravitational waves. The detection of a kilonova-like signature associated to the Swift-detected GRB 130603B has suggested that this event is the result of a compact object merger. Aims. Our knowledge on SGRB has been, until now, mostly based on the absence of supernova signatures and the analysis of the host galaxies to which they cannot always be securely associated. Further progress has been significantly hampered by the faintness and rapid fading of their optical counterparts (afterglows), which has so far precluded spectroscopy of such events. Afterglow spectroscopy is the key tool to firmly determine the distance at which the burst was produced, crucial to understand its physics, and study its local environment. Methods. Here we present the first spectra of a prototypical SGRB afterglow in which both absorption and emission features are clearly detected. Together with multi-wavelength photometry we study the host and environment of GRB 130603B. Results. From these spectra we determine the redshift of the burst to be z = 0.3565 +/- 0.0002, measure rich dynamics both in absorption and emission, and a substantial line of sight extinction of A(V) = 0.86 +/- 0.15 mag. The GRB was located at the edge of a disrupted arm of a moderately star forming galaxy with near-solar metallicity. Unlike for most long GRBs (LGRBs), N-HX/A(V) is consistent with the Galactic ratio, indicating that the explosion site differs from those found in LGRBs. Conclusions. The merger is not associated with the most star-forming region of the galaxy; however, it did occur in a dense region, implying a rapid merger or a low natal kick velocity for the compact object binary.


The Astrophysical Journal | 2015

LSQ14bdq: a type Ic Super-luminous Supernova with a double-peaked light curve

M. Nicholl; S. J. Smartt; A. Jerkstrand; S. A. Sim; C. Inserra; J. P. Anderson; Charles Baltay; Stefano Benetti; K. C. Chambers; T.-W. Chen; N. Elias-Rosa; U. Feindt; H. Flewelling; M. Fraser; Avishay Gal-Yam; L. Galbany; M. E. Huber; T. Kangas; E. Kankare; R. Kotak; T. Krühler; K. Maguire; R. McKinnon; D. Rabinowitz; S. Rostami; S. Schulze; K. W. Smith; M. Sullivan; John L. Tonry; S. Valenti

We present data for LSQ14bdq, a hydrogen-poor super-luminous supernova (SLSN) discovered by the La Silla QUEST survey and classified by the Public ESO Spectroscopic Survey of Transient Objects. The spectrum and light curve are very similar to slow-declining SLSNe such as PTF12dam. However, detections within ~1 day after explosion show a bright and relatively fast initial peak, lasting for ~15 days, prior to the usual slow rise to maximum light. The broader, main peak can be fit with either central engine or circumstellar interaction models. We discuss the implications of the precursor peak in the context of these models. It is too bright and narrow to be explained as a normal 56Ni-powered SN, and we suggest that interaction models may struggle to fit the two peaks simultaneously. We propose that the initial peak may arise from the post-shock cooling of extended stellar material, and reheating by a central engine drives the second peak. In this picture, we show that an explosion energy of ~2x10^{52} erg and a progenitor radius of a few hundred solar radii would be required to power the early emission. The competing engine models involve rapidly spinning magnetars (neutron stars) or fall-back accretion onto a central black hole. The prompt energy required may favour the black hole scenario. The bright initial peak effectively rules out a compact Wolf-Rayet star as a progenitor, since the inferred energies and ejected masses become unphysical.


The Astrophysical Journal | 2015

CONNECTING GRBs AND ULIRGs: A SENSITIVE, UNBIASED SURVEY FOR RADIO EMISSION FROM GAMMA-RAY BURST HOST GALAXIES AT 0 <z <2.5

Daniel A. Perley; R. A. Perley; J. Hjorth; M. J. Michałowski; S. B. Cenko; P. Jakobsson; T. Krühler; Andrew J. Levan; Daniele Malesani; Nial R. Tanvir

Luminous infrared galaxies and submillimeter galaxies contribute significantly to stellar mass assembly and the frequency of GRBs in these systems provides an important test of the connection between the gamma-ray burst rate and that of overall cosmic star-formation. We present sensitive 3 GHz radio observations using the Karl G. Jansky Very Large Array of 32 uniformly-selected GRB host galaxies spanning a redshift range from 0 10 uJy, corresponding to SFR >50 Msun/yr at z~1 or >250 Msun/yr at z~2. Similar galaxies contribute approximately 10-30% of all cosmic star-formation, so our results are consistent with a GRB rate which is not strongly biased with respect to the total star-formation rate of a galaxy. However, all four radio-detected hosts have modest stellar masses (~few x 10^10 Msun), significantly lower than IR/submillimeter-selected field galaxies of similar luminosities. We suggest that the GRB rate may be suppressed in metal-rich environments but independently enhanced in intense starbursts, producing a strong efficiency dependence on mass but little net dependence on bulk galaxy star-formation rate.


The Astrophysical Journal | 2015

THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. VII. THE HOST GALAXY LUMINOSITY FUNCTION: PROBING THE RELATIONSHIP BETWEEN GRBs AND STAR FORMATION TO REDSHIFT ∼6

S. Schulze; R. Chapman; J. Hjorth; Andrew J. Levan; P. Jakobsson; G. Björnsson; Daniel A. Perley; T. Krühler; Javier Gorosabel; Nial R. Tanvir; A. de Ugarte Postigo; J. P. U. Fynbo; B. Milvang-Jensen; P. Møller; Darach Watson

Gamma-ray bursts (GRBs) offer a route to characterizing star-forming galaxies and quantifying high-z star formation that is distinct from the approach of traditional galaxy surveys: GRB selection is independent of dust and probes even the faintest galaxies which can evade detection in flux-limited surveys. However, the exact relation between the GRB rate and the star formation rate (SFR) throughout all redshifts is controversial. The Optically Unbiased GRB Host (TOUGH) survey includes observations of all GRB hosts (69) in an optically unbiased sample of Swift GRBs; we utilize these to constrain the evolution of the UV GRB-host-galaxy luminosity function (LF) between z = 0 and z = 4.5, and compare this with LFs derived from both Lyman-break galaxy (LBG) surveys and simulation modeling. At all redshifts we find the GRB hosts to be most consistent with an LF derived from SFR weighted models incorporating GRB production via both metallicity-dependent and independent channels with a relatively high level of bias toward low metallicity hosts. In the range 1 < z < 3 an SFR weighted LBG derived (i.e., non-metallicity biased) LF is also a reasonable fit to the data. Between z ~ 3 and z ~ 6, we observe an apparent lack of UV bright hosts in comparison with LBGs, though the significance of this shortfall is limited by nine hosts of unknown redshift.


Astronomy and Astrophysics | 2015

VLT/X-Shooter spectroscopy of the afterglow of the Swift GRB 130606A. Chemical abundances and reionisation at z ~ 6

O. E. Hartoog; Daniele Malesani; Johan Peter Uldall Fynbo; T. Goto; T. Krühler; Paul M. Vreeswijk; A. De Cia; D. Xu; P. Møller; S. Covino; V. D’Elia; H. Flores; Paolo Goldoni; J. Hjorth; P. Jakobsson; J.-K. Krogager; L. Kaper; C. Ledoux; Andrew J. Levan; B. Milvang-Jensen; Jesper Sollerman; M. Sparre; G. Tagliaferri; Nial R. Tanvir; A. de Ugarte Postigo; S. D. Vergani; K. Wiersema; Juliet Datson; Ricardo Salinas; K. Mikkelsen

Context. The reionisation of the Universe is a process that is thought to have ended around z ~ 6, as inferred from spectroscopy of distant bright background sources, such as quasars (QSO) and gamma-ray burst (GRB) afterglows. Furthermore, spectroscopy of a GRB afterglow provides insight in its host galaxy, which is often too dim and distant to study otherwise. Aims. For the Swift GRBu2009130606A at z = 5.913 we have obtained a high S/N spectrum covering the full optical and near-IR wavelength region at intermediate spectral resolution with VLT/X-Shooter. We aim to measure the degree of ionisation of the intergalactic medium (IGM) between z = 5.02−5.84 and to study the chemical abundance pattern and dust content of its host galaxy.Methods. We estimated the UV continuum of the GRB afterglow using a power-law extrapolation, then measured the flux decrement due to absorption at Lyα,β, and γ wavelength regions. Furthermore, we fitted the shape of the red damping wing of Lyα. The hydrogen and metal absorption lines formed in the host galaxy were fitted with Voigt profiles to obtain column densities. We investigated whether ionisation corrections needed to be applied. Results. Our measurements of the Lyα-forest optical depth are consistent with previous measurements of QSOs, but have a much smaller uncertainty. The analysis of the red damping wing yields a neutral fraction xH i 5.6. GRBs are useful probes of the ionisation state of the IGM in the early Universe, but because of internal scatter we need a larger statistical sample to draw robust conclusions. The high [Si/Fe] in the host can be due to dust depletion, α-element enhancement, or a combination of both. The very high value of [ Al/Fe ] = 2.40 ± 0.78 might be due to a proton capture process and is probably connected to the stellar population history. We estimate the host metallicity to be −1.7 < [ M/H ] < −0.9 (2%−13% of solar).


Astronomy and Astrophysics | 2014

A trio of gamma-ray burst supernovae: - GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu

Z. Cano; A. de Ugarte Postigo; Alexei S. Pozanenko; N. Butler; C. C. Thöne; C. Guidorzi; T. Krühler; Javier Gorosabel; P. Jakobsson; G. Leloudas; Daniele Malesani; J. Hjorth; A. Melandri; Carole G. Mundell; K. Wiersema; P. D’Avanzo; S. Schulze; Andreja Gomboc; A. Johansson; W. Zheng; D. A. Kann; F. Knust; K. Varela; C. Akerlof; J. S. Bloom; O. Burkhonov; E. Cooke; J. A. de Diego; G. Dhungana; C. Fariña

We present optical and near-infrared (NIR) photometry for three gamma-ray burst supernovae (GRB-SNe): GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu. For GRB 130215A/SN 2013ez, we also present optical spectroscopy at t − t0 = 16.1 d, which covers rest-frame 3000–6250 A. Based on Feu2009ii λ5169 and Siu2009ii λ6355, our spectrum indicates an unusually low expansion velocity of ~4000–6350 kmu2009s-1, the lowest ever measured for a GRB-SN. Additionally, we determined the brightness and shape of each accompanying SN relative to a template supernova (SN 1998bw), which were used to estimate the amount of nickel produced via nucleosynthesis during each explosion. We find that our derived nickel masses are typical of other GRB-SNe, and greater than those of SNe Ibc that are not associated with GRBs. For GRB 130831A/SN 2013fu, we used our well-sampled R-band light curve (LC) to estimate the amount of ejecta mass and the kinetic energy of the SN, finding that these too are similar to other GRB-SNe. For GRB 130215A, we took advantage of contemporaneous optical/NIR observations to construct an optical/NIR bolometric LC of the afterglow. We fit the bolometric LC with the millisecond magnetar model of Zhang & Meszaros (2001, ApJ, 552, L35), which considers dipole radiation as a source of energy injection to the forward shock powering the optical/NIR afterglow. Using this model we derive an initial spin period of P = 12 ms and a magnetic field of B = 1.1 × 1015 G, which are commensurate with those found for proposed magnetar central engines of other long-duration GRBs.


The Astrophysical Journal | 2015

Gamma-Ray Bursts trace uv metrics of star formation over 3 < z < 5

J. Greiner; Derek B. Fox; Patricia Schady; T. Krühler; Michele Trenti; A. Cikota; J. Bolmer; J. Elliott; C. Delvaux; Rosalba Perna; P. M. J. Afonso; D. A. Kann; Sylvio Klose; Sandra Savaglio; S. Schmidl; T. Schweyer; M. Tanga; K. Varela

We present the first uniform treatment of long duration gamma-ray burst (GRB) host galaxy detections and upper limits over the redshift range , a key epoch for observational and theoretical efforts to understand the processes, environments, and consequences of early cosmic star formation (SF). We contribute deep imaging observations of 13 GRB positions yielding the discovery of 8 new host galaxies. We use this data set in tandem with previously published observations of 31 further GRB positions to estimate or constrain the host galaxy rest-frame ultraviolet (UV; ?) absolute magnitudes . We then use the combined set of 44 estimates and limits to construct the luminosity function (LF) for GRB host galaxies over and compare it to expectations from Lyman break galaxy (LBG) photometric surveys with the Hubble Space Telescope. Adopting standard prescriptions for the luminosity dependence of galaxy dust obscuration (and hence, total SF rate), we find that our LF is compatible with LBG observations over a factor of 600? in host luminosity, from = ?22.5 mag to >?15.6 mag, and with extrapolations of the assumed Schechter-type LF well beyond this range. We review proposed astrophysical and observational biases for our sample, and find that they are for the most part minimal. We therefore conclude, as the simplest interpretation of our results, that GRBs successfully trace UV metrics of cosmic SF over the range . Our findings suggest that GRBs provide an accurate picture of star formation processes from out to the highest redshifts.


Astronomy and Astrophysics | 2015

MUSE integral-field spectroscopy towards the Frontier Fields cluster Abell S1063 I. Data products and redshift identifications

W. Karman; Karina Caputi; C. Grillo; I. Balestra; Piero Rosati; E. Vanzella; D. Coe; Lise Christensen; Anton M. Koekemoer; T. Krühler; M. Lombardi; A. Mercurio; M. Nonino; A. van der Wel

We present the first observations of the Frontier Fields cluster Abell S1063 taken with the newly commissioned Multi Unit Spectroscopic Explorer ( MUSE) integral field spectrograph. Because of the relatively large field of view ( 1 arcmin(2)), MUSE is ideal to simultaneously target multiple galaxies in blank and cluster fields over the full optical spectrum. We analysed the four hours of data obtained in the science verification phase on this cluster and measured redshifts for 53 galaxies. We confirm the redshift of five cluster galaxies, and determine the redshift of 29 other cluster members. Behind the cluster, we find 17 galaxies at higher redshift, including three previously unknown Lyman-alpha emitters at z > 3, and five multiply-lensed galaxies. We report the detection of a new z = 4.113 multiply lensed galaxy, with images that are consistent with lensing model predictions derived for the Frontier Fields. We detect C III], C IV, and He II emission in a multiply lensed galaxy at z = 3.116, suggesting the likely presence of an active galactic nucleus. We also created narrow-band images from the MUSE datacube to automatically search for additional line emitters corresponding to high-redshift candidates, but we could not identify any significant detections other than those found by visual inspection. With the new redshifts, it will become possible to obtain an accurate mass reconstruction in the core of Abell S1063 through refined strong lensing modelling. Overall, our results illustrate the breadth of scientific topics that can be addressed with a single MUSE pointing. We conclude that MUSE is a very efficient instrument to observe galaxy clusters, enabling their mass modelling, and to perform a blind search for high-redshift galaxies.


Astronomy and Astrophysics | 2014

The mysterious optical afterglow spectrum of GRB 140506A at z = 0.889

Johan Peter Uldall Fynbo; T. Krühler; Karen M. Leighly; C. Ledoux; Paul M. Vreeswijk; Sharon Kay Schulze; P. Noterdaeme; D. Watson; R. A. M. J. Wijers; J. Bolmer; Z. Cano; L. Christensen; S. Covino; V. D’Elia; H. Flores; M. Friis; P. Goldoni; J. Greiner; F. Hammer; J. Hjorth; P. Jakobsson; J. Japelj; L. Kaper; Sylvio Klose; F. Knust; G. Leloudas; Andrew J. Levan; Daniele Malesani; B. Milvang-Jensen; P. Møller

Context. Gamma-ray burst (GRB) afterglows probe sightlines to star-forming regions in distant star-forming galaxies. Here we present a study of the peculiar afterglow spectrum of the z = 0.889Swift GRBu2009140506A.Aims. Our aim is to understand the origin of the very unusual properties of the absorption along the line of sight.Methods. We analyse spectroscopic observations obtained with the X-shooter spectrograph mounted on the ESO/VLT at two epochs 8.8 h and 33 h after the burst, and with imaging from the GROND instrument. We also present imaging and spectroscopy of the host galaxy obtained with the Magellan telescope.Results. The underlying afterglow appears to be a typical afterglow of a long-duration GRB. However, the material along the line of sight has imprinted very unusual features on the spectrum. First, there is a very broad and strong flux drop below 8000 A (~4000 A in the rest frame), which seems to be variable between the two spectroscopic epochs. We can reproduce the flux-drops both as a giant 2175 A extinction bump and as an effect of multiple scattering on dust grains in a dense environment. Second, we detect absorption lines from excited Hu2009i and Heu2009i. We also detect molecular absorption from CH+.Conclusions. We interpret the unusual properties of these spectra as reflecting the presence of three distinct regions along the line of sight: the excited Heu2009i absorption originates from an Hu2009ii-region, whereas the Balmer absorption must originate from an associated photodissociation region. The strong metal line and molecular absorption and the dust extinction must originate from a third, cooler region along the line of sight. The presence of at least three separate regions is reflected in the fact that the different absorption components have different velocities relative to the systemic redshift of the host galaxy.

Collaboration


Dive into the T. Krühler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Hjorth

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

S. Schulze

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar

A. de Ugarte Postigo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sylvio Klose

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge