Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. L. Bourke is active.

Publication


Featured researches published by T. L. Bourke.


Astrophys.J.Suppl. | 2007

The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. 6. Perseus Observed with MIPS

Luisa Marie Rebull; T. H. Jarrett; Kaisa E. Young; G. A. Blake; Lori E. Allen; P. C. Myers; Paul M. Harvey; W.J. Spiesmann; E.F. van Dishoeck; Nicholas L. Chapman; David William Koerner; Tracy L. Huard; Shih-Ping Lai; Bruno Merín; T. L. Bourke; Jes Joergensen; Deborah Lynne Padgett; Karl R. Stapelfeldt; A. I. Sargent; Zahed Wahhaj; T. Brooke; Alberto Noreiga-Crespo; Neal J. Evans; Lee G. Mundy

We present observations of 10.6 deg^2 of the Perseus molecular cloud at 24, 70, and 160 μm with Spitzer MIPS. The images show prominent, complex extended emission dominated by illuminating B stars on the east side of the cloud and by cold filaments of 160 μm emission on the west side. Of 3950 point sources identified at 24 μm, 1141 have 2MASS counterparts. A quarter of these populate regions of the K_s versus K_s - [24] diagram that are distinct from stellar photospheres and background galaxies and thus are likely to be cloud members with infrared excess. Nearly half (46%) of these 24 μm excess sources are distributed outside the IC 348 and NGC 1333 clusters. A significant number of IRAS PSC objects are not recovered by Spitzer MIPS, most often because the IRAS objects were confused by bright nebulosity. The intercluster region contains several tightly clumped (r ~ 0.1 pc) young stellar aggregates whose members exhibit a wide variety of infrared SEDs characteristic of different circumstellar environments. This could be explained by a significant age spread among the aggregate members, or if the members formed at the same time, a remarkably rapid circumstellar evolution would be required to account for the association of Class I and Class III sources at ages ≲1 Myr. We highlight important results for the HH 211 flow, where the bow shocks are detected at both 24 and 70 μm, and for the debris disk candidate BD +31 643, where the MIPS data show the linear nebulosity to be an unrelated interstellar feature. Our data, mosaics, and catalogs are available at the Spitzer Science Archive for use by interested members of the community.


The Astrophysical Journal | 2009

Multidimensional chemical modeling of young stellar objects - II. Irradiated outflow walls in a high-mass star-forming region

S. Bruderer; Arnold O. Benz; S. D. Doty; E. F. van Dishoeck; T. L. Bourke

Observations of the high-mass star forming region AFGL 2591 reveal a large abundance of CO+, a molecule known to be enhanced by far UV (FUV) and X-ray irradiation. In chemical models assuming a spherically symmetric envelope, the volume of gas irradiated by protostellar FUV radiation is very small due to the high extinction by dust. The abundance of CO+ is thus underpredicted by orders of magnitude. In a more realistic model, FUV photons can escape through an outflow region and irradiate gas at the border to the envelope. Thus, we introduce the first 2D axi-symmetric chemical model of the envelope of a high-mass star forming region to explain the CO+ observations as a prototypical FUV tracer. The model assumes an axi-symmetric power-law density structure with a cavity due to the outflow. The local FUV flux is calculated by a Monte Carlo radiative transfer code taking scattering on dust into account. A grid of precalculated chemical abundances, introduced in the first part of this series of papers, is used to quickly interpolate chemical abundances. This approach allows to calculate the temperature structure of the FUV heated outflow walls self-consistently with the chemistry. Synthetic maps of the line flux are calculated using a raytracer code. Single-dish and interferometric observations are simulated and the model results are compared to published and new JCMT and SMA observations. The two-dimensional model of AFGL 2591 is able to reproduce the JCMT single-dish observations and also explains the non-detection by the SMA. We conclude that the observed CO+ line flux and its narrow width can be interpreted by emission from the warm and dense outflow walls irradiated by protostellar FUV radiation.Observations of the high-mass star-forming region AFGL 2591 reveal a large abundance of CO+, a molecule known to be enhanced by far-ultraviolet (FUV) and X-ray irradiation. In chemical models assuming a spherically symmetric envelope, the volume of gas irradiated by protostellar FUV radiation is very small due to the high extinction by dust. The abundance of CO+ is thus underpredicted by orders of magnitude. In a more realistic model, FUV photons can escape through an outflow region and irradiate gas at the border to the envelope. Thus, we introduce the first two-dimensional axisymmetric chemical model of the envelope of a high-mass star-forming region to explain the CO+ observations as a prototypical FUV tracer. The model assumes an axisymmetric power-law density structure with a cavity due to the outflow. The local FUV flux is calculated by a Monte Carlo radiative transfer code taking scattering on dust into account. A grid of precalculated chemical abundances, introduced in the first part of this series of papers, is used to quickly interpolate chemical abundances. This approach allows us to calculate the temperature structure of the FUV-heated outflow walls self-consistently with the chemistry. Synthetic maps of the line flux are calculated using a raytracer code. Single-dish and interferometric observations are simulated and the model results are compared to published and new JCMT and Submillimeter Array (SMA) observations. The two-dimensional model of AFGL 2591 is able to reproduce the JCMT single-dish observations and also explains the nondetection by the SMA. We conclude that the observed CO+ line flux and its narrow width can be interpreted by emission from the warm and dense outflow walls irradiated by protostellar FUV radiation.


Astronomy and Astrophysics | 2010

Grain growth across protoplanetary discs: 10 μm silicate feature versus millimetre slope

Dave Lommen; E. F. van Dishoeck; Christopher M. Wright; Sarah T. Maddison; M. Min; David J. Wilner; D. M. Salter; H. J. van Langevelde; T. L. Bourke; R. F. J. van der Burg; Geoffrey A. Blake

Context. Young stars are formed with dusty discs around them. The dust grains in the disc are originally of the same size as interstellar dust, i.e., of the order of 0.1 μm. Models predict that these grains will grow in size through coagulation. Observations of the silicate features around 10 and 20 μm are consistent with growth from submicron to micron sizes in selected sources whereas the slope of the spectral energy distribution (SED) at mm and cm wavelengths traces growth up to mm sizes and larger. Aims. We here look for a correlation between these two grain growth indicators. Methods. A large sample of T-Tauri and Herbig-Ae/Be stars, spread over the star-forming regions in Chamaeleon, Lupus, Serpens, Corona Australis, and the Gum nebula in Vela, was observed with the Spitzer Space Telescope at 5–13 μm, and a subsample was observed with the SMA, ATCA, CARMA, and VLA at mm wavelengths. We complement this subsample with data from the literature to maximise the overlap between μm and mm observations and search for correlations in the grain-growth signatures. Synthetic spectra are produced to determine which processes may produce the dust evolution observed in protoplanetary discs. Results. Dust disc masses in the range <1 to 7 × 10^(-4) M_☉ are obtained. The majority of the sources have a mm spectral slope consistent with grain growth. There is a tentative correlation between the strength and the shape of the 10-μm silicate feature and the slope of the SED between 1 and 3 mm. The observed sources seem to be grouped per star-forming region in the 10-μm-feature vs. mm-slope diagram. The modelling results show that, if only the maximum grain size is increased, first the 10-μm feature becomes flatter and subsequently the mm slope becomes shallower. To explain the sources with the shallowest mm slopes, a grain size distribution shallower than that of the interstellar medium is required. Furthermore, the strongest 10-μm features can only be explained with bright (L ~ 6 L_☉), hot (T_(eff) = 4000 K) central stars. Settling of larger grains towards the disc midplane results in a stronger 10-μm feature, but has a very limited effect on the mm slope. Conclusions. A tentative correlation between the strength of the 10-μm feature and the mm slope is found, which would imply that the inner and outer disc evolve simultaneously. Dust with a mass dominated by large, ~mm-sized, grains is required to explain the shallowest mm slopes. Other processes besides grain growth, such as the clearing of an inner disc by binary interaction, may also be responsible for the removal of small grains. Observations with future telescopes with larger bandwidths or collecting areas are required to provide the necessary statistics to study these processes of disc and dust evolution.


Astronomy and Astrophysics | 2004

Laboratory and radio-astronomical spectroscopy of the hyperfine structure of N~2D^+

L. Dore; P. Caselli; S. Beninati; T. L. Bourke; P. C. Myers; Gabriele Cazzoli

We present the first laboratory measurements of the hyperfine structure of the J = 1 ← 0 rotational transition of N 2 D + , a good tracer of the dense regions of molecular cloud cores, and the spectra of unresolved high J transitions recorded in the 308-463 GHz region. Together with a high sensitivity radio-astronomical spectrum of the N 2 D + J = 1 → 0 rotational transition in a quiescent cloud core, we determined with high precision the frequencies of the seven hyperfine components and the molecular spectroscopic constants, allowing us to make predictions on the N 2 D + frequencies of higher J transitions occurring in the submillimeter-wave region.


Monthly Notices of the Royal Astronomical Society | 2013

Abundant cyanopolyynes as a probe of infall in the Serpens South cluster-forming region

R. Friesen; L. Medeiros; Scott Schnee; T. L. Bourke; J. Di Francesco; Robert Allen Gutermuth; P. C. Myers

We have detected bright HC7N J = 21 20 emission toward multiple locations in the Serpens South cluster-forming region using the K-Band Focal Plane Array at the Robert C. Byrd Green Bank Telescope. HC7N is seen primarily toward cold filamentary structures that have yet to form stars, largely avoiding the dense gas associated with small protostellar groups and the main central cluster of Serpens South. Where detected, the HC7N abundances are similar to those found in other nearby starforming regions. Toward some HC7N ‘clumps’, we find consistent variations in the line centroids relative to NH3 (1,1) emission, as well as systematic increases in the HC7N non-thermal line widths, which we argue reveal infall motions onto dense filaments within Serpens South with minimum mass accretion rates of M � 2 5 M⊙ Myr −1 . The relative abundance of NH3 to HC7N suggests that the HC7N is tracing gas that has been at densities n � 10 4 cm −3 for timescales t . 1 2 × 10 5 yr. Since HC7N emission peaks are rarely co-located with those of either NH3 or continuum, it is likely that Serpens South is not particularly remarkable in its abundance of HC7N, but instead the serendipitous mapping of HC7N simultaneously with NH3 has allowed us to detect HC7N at low abundances in regions where it otherwise may not have been looked for. This result extends the known star-forming regions containing significant HC7N emission from typically quiescent regions, like the Taurus molecular cloud, to more complex, active environments.


Astronomy and Astrophysics | 2016

The ALMA-PILS survey: First detections of deuterated formamide and deuterated isocyanic acid in the interstellar medium

A. Coutens; Jes K. Jørgensen; M. H. D. van der Wiel; Holger S. P. Müller; J. M. Lykke; P. Bjerkeli; T. L. Bourke; H. Calcutt; M. N. Drozdovskaya; C. Favre; Edith C. Fayolle; Robin T. Garrod; S. K. Jacobsen; N. F. W. Ligterink; Karin I. Öberg; M. V. Persson; E. F. van Dishoeck; S. F. Wampfler

Formamide (NH2CHO) has previously been detected in several star-forming regions and is thought to be a precursor for different prebiotic molecules. Its formation mechanism is still debated, however. Observations of formamide, related species, and their isopotologues may provide useful clues to the chemical pathways leading to their formation. The Protostellar Interferometric Line Survey (PILS) represents an unbiased, high angular resolution and sensitivity spectral survey of the low-mass protostellar binary IRAS 16293-2422 with the Atacama Large Millimeter/submillimeter Array (ALMA). For the first time, we detect the three singly deuterated forms of NH2CHO (NH2CDO, cis-and trans-NHDCHO), as well as DNCO towards the component B of this binary source. The images reveal that the different isotopologues are all present in the same region. Based on observations of the 13C isotopologues of formamide and a standard 12C/13C ratio, the deuterium fractionation is found to be similar for the three different forms with a value of about 2%. The DNCO/HNCO ratio is also comparable to the D/H ratio of formamide (~1%). These results are in agreement with the hypothesis that NH2CHO and HNCO are chemically related through grain-surface formation.


The Astrophysical Journal | 2011

THE STRUCTURE OF THE STAR-FORMING CLUSTER RCW 38

E. Winston; Scott J. Wolk; T. L. Bourke; S. T. Megeath; Robert Allen Gutermuth; Bradley D. Spitzbart

We present a study of the structure of the high-mass star-forming region RCW 38 and the spatial distribution of its young stellar population. Spitzer Infrared Array Camera (IRAC) photometry (3-8 μm) is combined with Two Micron All Sky Survey near-IR data to identify young stellar objects (YSOs) by IR-excess emission from their circumstellar material. Chandra X-ray data are used to identify class III pre-main-sequence stars lacking circumstellar material. We identify 624 YSOs: 23 class 0/I and 90 flat spectrum protostars, 437 class II stars, and 74 class III stars. We also identify 29 (27 new) O star candidates over the IRAC field. Seventy-two stars exhibit IR-variability, including 7 class 0/I and 12 flat spectrum YSOs. A further 177 tentative candidates are identified by their location in the IRAC [3.6] versus [3.6]-[5.8] color-magnitude diagram. We find strong evidence of subclustering in the region. Three subclusters were identified surrounding the central cluster, with massive and variable stars in each subcluster. The central region shows evidence of distinct spatial distributions of the protostars and pre-main-sequence stars. A previously detected IR cluster, DB2001_Obj36, has been established as a subcluster of RCW 38. This suggests that star formation in RCW 38 occurs over a more extended area than previously thought. The gas-to-dust ratio is examined using the X-ray derived hydrogen column density, N H and the K-band extinction, and found to be consistent with the diffuse interstellar medium, in contrast with Serpens and NGC 1333. We posit that the high photoionizing flux of massive stars in RCW 38 affects the agglomeration of the dust grains.


Astronomy and Astrophysics | 2017

The ALMA-PILS survey: First detections of ethylene oxide, acetone and propanal toward the low-mass protostar IRAS 16293-2422

J. M. Lykke; A. Coutens; Jes K. Jørgensen; M. H. D. van der Wiel; Robin T. Garrod; Holger S. P. Müller; P. Bjerkeli; T. L. Bourke; H. Calcutt; M. N. Drozdovskaya; C. Favre; Edith C. Fayolle; S. K. Jacobsen; Karin I. Öberg; M. V. Persson; E. F. van Dishoeck; S. F. Wampfler

Context. One of the open questions in astrochemistry is how complex organic and prebiotic molecules are formed. The unsurpassed sensitivity of the Atacama Large Millimeter/submillimeter Array (ALMA) takes the quest for discovering molecules in the warm and dense gas surrounding young stars to the next level. Aims. Our aim is to start the process of compiling an inventory of oxygen-bearing complex organic molecules toward the solar-type Class 0 protostellar binary IRAS 16293-2422 from an unbiased spectral survey with ALMA, Protostellar Interferometric Line Survey (PILS). Here we focus on the new detections of ethylene oxide (c-C2H4O), acetone (CH3COCH3), and propanal (C2H5CHO). Methods. With ALMA, we surveyed the spectral range from 329 to 363 GHz at 0.5? (60 AU diameter) resolution. Using a simple model for the molecular emission in local thermodynamical equilibrium, the excitation temperatures and column densities of each species were constrained. Results. We successfully detect propanal (44 lines), ethylene oxide (20 lines) and acetone (186 lines) toward one component of the protostellar binary, IRAS 16293B. The high resolution maps demonstrate that the emission for all investigated species originates from the compact central region close to the protostar. This, along with a derived common excitation temperature of Tex ? 125 K, is consistent with a coexistence of these molecules in the same gas. Conclusions. The observations mark the first detections of acetone, propanal and ethylene oxide toward a low-mass protostar. The relative abundance ratios of the two sets of isomers, a CH3COCH3/C2H5CHO ratio of 8 and a CH3CHO/c-C2H4O ratio of 12, are comparable to previous observations toward high-mass protostars. The majority of observed abundance ratios from these results as well as those measured toward high-mass protostars are up to an order of magnitude above the predictions from chemical models. This may reflect either missing reactions or uncertain rates in the chemical networks. The physical conditions, such as temperatures or densities, used in the models, may not be applicable to solar-type protostars either.


Monthly Notices of the Royal Astronomical Society | 2015

Resolving structure of the disc around HD100546 at 7 mm with ATCA

Christopher M. Wright; Sarah T. Maddison; David J. Wilner; Michael G. Burton; Dave Lommen; E. F. van Dishoeck; P. Pinilla; T. L. Bourke; Francois Menard; Catherine Walsh

There is much evidence that planet formation is occurring in the disc around the Herbig Be star HD100546. To learn more about the processes occurring in this disc, we conducted high-resolution imaging at 43/45 GHz with the Australia Telescope Compact Array. Multiple array configurations were used, providing a best spatial resolution of ∼0.15 arcsec, or 15 au at HD100546s distance of ∼100 pc. Significant structure is revealed, but its precise form is dependent on the u − v plane sampling used for the image reconstruction. At a resolution of ≤30 au, we detected an inner gap in the disc with a radius of ∼25 au and a position angle approximately along the known disc major axis. With different weighting, and an achieved resolution of ∼15 au, emission appears at the centre and the disc takes on the shape of an incomplete ring, much like a horseshoe, again with a gap radius of ∼25 au. The position angle of the disc major axis and its inclination from face-on are determined to be 140° ± 5° and 40° ± 5°, respectively. The ∼25 au gap radius is confirmed by a null in the real part of the binned visibilities at 320 ± 10 kλ, whilst the non-axisymmetric nature is also confirmed through significant structure in the imaginary component. The emission mechanism at the central peak is most likely to be free–free emission from a stellar or disc wind. Overall our data support the picture of at least one, but probably several, giant planets orbiting HD100546 within 25 au.


The Astrophysical Journal | 2014

Revealing H2D+ depletion and compact structure in starless and protostellar cores with ALMa

R. Friesen; J. Di Francesco; T. L. Bourke; P. Caselli; Jes K. Jørgensen; Jaime E. Pineda; M. Wong

We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the submillimeter dust continuum and H2D+ 1_{10}-1_{11} emission toward two evolved, potentially protostellar cores within the Ophiuchus molecular cloud, Oph A SM1 and SM1N. The data reveal small-scale condensations within both cores, with mass upper limits of M <~ 0.02M_Sun (~ 20 M_Jup). The SM1 condensation is consistent with a nearly-symmetric Gaussian source with a width of only 37 AU. The SM1N condensation is elongated, and extends 500 AU along its major axis. No evidence for substructure is seen in either source. A Jeans analysis indicates these sources are unlikely to fragment, suggesting that both will form single stars. H2D+ is only detected toward SM1N, offset from the continuum peak by ~150-200 AU. This offset may be due to either heating from an undetected, young, low luminosity protostellar source or first hydrostatic core, or HD (and consequently H2D+) depletion in the cold centre of the condensation. We propose that SM1 is protostellar, and that the condensation detected by ALMA is a warm (T ~ 30-50 K) accretion disk. The less concentrated emission of the SM1N condensation suggests that it is still starless, but we cannot rule out the presence of a low-luminosity source, perhaps surrounded by a pseudodisk. These data reveal observationally the earliest stages of the formation of circumstellar accretion regions, and agree with theoretical predictions that disk formation can occur very early in the star formation process, coeval with or just after the formation of a first hydrostatic core or protostar.

Collaboration


Dive into the T. L. Bourke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher M. Wright

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah T. Maddison

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge