Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. L. Chen is active.

Publication


Featured researches published by T. L. Chen.


The Astrophysical Journal | 2015

Argo-ybj Observation of the Large-scale Cosmic ray Anisotropy During the Solar Minimum Between Cycles 23 and 24

B. Bartoli; B.D. Piazzoli; F. R. Zhu; P. R. Shen; P. Vallania; R. Santonico; X.H. Ma; G. Marsella; S. W. Cui; Y. H. Tan; Haibing Hu; H. Lu; H. Y. Jia; M. Zha; Zhaxiciren; P. Salvini; C. Vigorito; T. Di Girolamo; M. Y. Liu; P. Pistilli; C. C. Ning; X. X. Zhou; A. D'Amone; Y. Q. Guo; A. Surdo; J. Liu; H. R. Wu; Hongbo Hu; S. Mastroianni; Zhaxisangzhu

This paper reports on the measurement of the large-scale anisotropy in the distribution of cosmic-ray arrival directions using the data collected by the air shower detector ARGO-YBJ from 2008 January to 2009 December, during the minimum of solar activity between cycles 23 and 24. In this period, more than 2 × 10 11 showers were recorded with energies between ∼1 and 30 TeV. The observed two-dimensional distribution of cosmic rays is characterized by two wide regions of excess and deficit, respectively, both of relative intensity ∼10 −3 with respect to a uniform flux, superimposed on smaller size structures. The harmonic analysis shows that the large-scale cosmic-ray relative intensity as a function of R.A. can be described by the first and second terms of a Fouries series. The high event statistics allow the study of the energy dependence of the anistropy, showing that the amplitude increases with energy, with a maximum intensity at ∼10 TeV, and then decreases while the phase slowly shifts toward lower values of R.A. with increasing energy. The ARGO-YBJ data provide accurate observations over more than a decade of energy around this feature of the anisotropy spectrum.


The Astrophysical Journal | 2015

STUDY OF THE DIFFUSE GAMMA-RAY EMISSION FROM THE GALACTIC PLANE WITH ARGO-YBJ

B. Bartoli; G. Di Sciascio; F. R. Zhu; P. R. Shen; M. Panareo; P. Camarri; R. Santonico; D. Martello; X.H. Ma; T. Di Girolamo; S. Mastroianni; S. W. Cui; Y. H. Tan; Haibing Hu; B. D'Ettorre Piazzoli; H. Y. Jia; M. Zha; Zhaxiciren; P. Salvini; C. Vigorito; G. Zizzi; Q. Y. Yang; M. Y. Liu; P. Pistilli; C. C. Ning; X. X. Zhou; A. D'Amone; Y. Q. Guo; A. Surdo; J. Liu

The events recorded by ARGO-YBJ in more than fiveyears of data collection have been analyzed to determine the diffuse gamma-ray emission in the Galactic plane at Galactic longitudes 25° < l < 100° and Galactic latitudes b 5 ∣ ∣< °. The energy range covered by this analysis, from ∼350 GeV to ∼2 TeV, allows the connection of the region explored by Fermi with the multi-TeV measurements carried out by Milagro. Our analysis has been focused on two selected regions of the Galactic plane, i.e., 40° < l < 100° and 65° < l <8 5 °( the Cygnus region), where Milagro observed an excess with respect to the predictions of current models. Great care has been taken in order to mask the most intense gamma-ray sources, including the TeV counterpart of the Cygnus cocoon recently identified by ARGO-YBJ, and to remove residual contributions. The ARGO-YBJ results do not show any excess at sub-TeV energies corresponding to the excess found by Milagro, and are consistent with the predictions of the Fermi model for the diffuse Galactic emission. From the measured energy distribution we derive spectral indices and the differential flux at 1 TeV of the diffuse gamma-ray emission in the sky regions investigated.


The Astrophysical Journal | 2015

CRAB NEBULA: FIVE-YEAR OBSERVATION WITH ARGO-YBJ

B. Bartoli; P. Bernardini; X. J. Bi; P. Branchini; A. Budano; P. Camarri; Z. Cao; R. Cardarelli; S. Catalanotti; S. Chen; T. L. Chen; P. Creti; S. W. Cui; B. Z. Dai; A. D'Amone; Danzengluobu; I. De Mitri; B. D'Ettorre Piazzoli; T. Di Girolamo; G. Di Sciascio; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; Q. B. Gou; Y. Q. Guo; H. H. He; Haibing Hu; Hongbo Hu; M. Iacovacci; R. Iuppa

The ARGO-YBJ air shower detector monitored the Crab Nebula g amma ray emission from 2007 November to 2013 February. The integrated signal, consisting of ∼3.3× 105 events, reached the statistical significance of 21.1 standard deviations. The obtained energy spectrum in t he energy range 0.3-20 TeV can be described by a power law function dN/dE = I 0 (E / 2 TeV)−α, with a flux normalization I 0 = (5.2± 0.2)× 10−12 photons cm−2 s−1 TeV−1 andα = 2.63± 0.05, corresponding to an integrated flux above 1 TeV of 1.97 × 10−11 photons cm−2 s−1. The systematic error is estimated to be less that 30% for the flux normalization and 0.06 for the spectral index. Assuming a power law spectrum with an exponential cut off dN/dE = I0 (E / 2 TeV)−α exp (-E / Ecut), the lower limit of the cutoff energy Ecut is 12 TeV, at 90% confidence level. Our extended dataset allow s the study of the TeV emission over long timescales. Over five years, the lig t curve of the Crab Nebula in 200-day bins is compatible with a steady emission with a probability of 7.3 × 10−2. A correlated analysis with Fermi-LAT data over∼4.5 years using the light curves of the two experiments gives a Pearson correlation coefficient r = 0.56± 0.22. Concerning flux variations on timescales of days, a “bl ind” search for flares with a duration of 1-15 days gives no excess with a significance higher than four standard eviations. The average rate measured by ARGOYBJ during the three most powerful flares detected by Fermi-L AT is 205± 91 photons day −1, consistent with the average value of 137 ± 10 day−1.


Astrophysical Journal Supplement Series | 2016

4.5 Years of Multi-Wavelength Observations of Mrk 421 During the Argo-Ybj and Fermi Common Operation Time

B. Bartoli; P. Bernardini; X. J. Bi; Z. Cao; S. Catalanotti; Songzhan Chen; T. L. Chen; S. W. Cui; B. Z. Dai; A. D’Amone; Danzengluobu; I. De Mitri; B. D’Ettorre Piazzoli; T. Di Girolamo; G. Di Sciascio; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; Q. B. Gou; Y. Q. Guo; H. H. He; Haibing Hu; Hongbo Hu; M. Iacovacci; R. Iuppa; H. Y. Jia; Labaciren; H. J. Li; C. Liu; J. Liu

We report on the extensive multi-wavelength observations of the blazar Markarian 421 (Mrk 421) covering radio to gamma-rays, during the 4.5 year period of ARGO-YBJ and Fermi common operation time, from August 2008 to February 2013. In particular, thanks to the ARGO-YBJ and Fermi data, the whole energy range from 100 MeV to 10 TeV is covered without any gap. In the observation period, Mrk 421 showed both low and high activity states at all wavebands. The correlations among flux variations in different wavebands were analyzed. Seven large flares, including five X-ray flares and two GeV gamma-ray flares with variable durations (3-58 days), and one X-ray outburst phase were identified and used to investigate the variation of the spectral energy distribution with respect to a relative quiescent phase. During the outburst phase and the seven flaring episodes, the peak energy in X-rays is observed to increase from sub-keV to few keV. The TeV gamma-ray flux increases up to 0.9-7.2 times the flux of the Crab Nebula. The behavior of GeV gamma-rays is found to vary depending on the flare, a feature that leads us to classify flares into three groups according to the GeV flux variation. Finally, the one-zone synchrotron self-Compton model was adopted to describe the emission spectra. Two out of three groups can be satisfactorily described using injected electrons with a power-law spectral index around 2.2, as expected from relativistic diffuse shock acceleration, whereas the remaining group requires a harder injected spectrum. The underlying physical mechanisms responsible for different groups may be related to the acceleration process or to the environment properties.


Physical Review D | 2015

Cosmic ray proton plus helium energy spectrum measured by the ARGO-YBJ experiment in the energy range 3-300 TeV

B. Bartoli; P. Bernardini; Bi X. J.; Z. Cao; S. Catalanotti; S. Chen; T. L. Chen; S. W. Cui; B. Z. Dai; A. D'Amone; Null Danzengluobu; I. De Mitri; B. D'Ettorre Piazzoli; T. Di Girolamo; G. Di Sciascio; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; Quanbu Gou; Y. Q. Guo; He H. H.; Hu Haibing; Hu Hongbo; M. Iacovacci; R. Iuppa; H. Y. Jia; Null Labaciren; Li H. J.; C. Liu; J. Liu

The ARGO-YBJ experiment is a full-coverage air shower detector located at the Yangbajing Cosmic Ray Observatory (Tibet, Peoples Republic of China, 4300 m a.s.l.). The high altitude, combined with the full-coverage technique, allows the detection of extensive air showers in a wide energy range and offer the possibility of measuring the cosmic ray proton plus helium spectrum down to the TeV region, where direct balloon/space-borne measurements are available. The detector has been in stable data taking in its full configuration from November 2007 to February 2013. In this paper the measurement of the cosmic ray proton plus helium energy spectrum is presented in the region 3-300 TeV by analyzing the full collected data sample. The resulting spectral index is


The Astrophysical Journal | 2017

Northern Sky Galactic Cosmic Ray Anisotropy between 10 and 1000 TeV with the Tibet Air Shower Array

M. Amenomori; X. J. Bi; D. Chen; T. L. Chen; W. Y. Chen; S. W. Cui; Danzengluobu; L. K. Ding; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; Q. B. Gou; Y. Q. Guo; H. H. He; Z. T. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; H. Y. Jia; L. Jiang; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata; M. Kozai; Labaciren; G. M. Le

\gamma = -2.64 \pm 0.01


Journal of Instrumentation | 2017

New prototype scintillator detector for the Tibet ASγ experiment

Y. Zhang; Q. B. Gou; H. Cai; T. L. Chen; Danzengluobu Danzengluobu; C. F. Feng; Y.-L. Feng; Zhaoyang Feng; Q. Gao; X.-J. Gao; Y. Q. Guo; Y.-Y. Guo; Y.-Y. Hou; H. B. Hu; C. Jin; H. J. Li; C. Liu; M. Y. Liu; Xl Qian; Z. Tian; Z. Wang; L. Xue; X. Zhang; Xi-Ying Zhang

. These results demonstrate the possibility of performing an accurate measurement of the spectrum of light elements with a ground based air shower detector.


Journal of Instrumentation | 2017

Wide field-of-view atmospheric Cherenkov telescope based on refractive lens

H. Cai; Y. Zhang; C. Liu; Q. Gao; Z. Wang; T. L. Chen; X. Zhang; Y.-L. Feng; Q. Wang; Z. Tian; Y. Q. Guo; Q. B. Gou; Danzengluobu Danzengluobu; M. Y. Liu; H. J. Li; Z.-E. Yao

We report on the analysis of the 10−1000 TeV large-scale sidereal anisotropy of Galactic cosmic rays (GCRs) with the data collected by the Tibet Air Shower Array from 1995 October to 2010 February. In this analysis, we improve the energy estimate and extend the decl. range down to −30◦. We find that the anisotropy maps above 100 TeV are distinct from that at a multi-TeV band. The so-called tail-in and loss-cone features identified at low energies get less significant, and a new component appears at ∼ 100 TeV. The spatial distribution of the GCR intensity with an excess (7.2σ pre-trial, 5.2σ post-trial) and a deficit (−5.8σ pre-trial) are observed in the 300 TeV anisotropy map, in close agreement with IceCube’s results at 400 TeV. Combining the Tibet results in the northern sky with IceCube’s results in the southern sky, we establish a full-sky picture of the anisotropy in hundreds of TeV band. We further find that the amplitude of the first order anisotropy increases sharply above ∼ 100 TeV, indicating a new component of the anisotropy. All these results may shed new light on understanding the origin and propagation of GCRs.


Proceedings of 35th International Cosmic Ray Conference — PoS(ICRC2017) | 2017

Measurement of high energy cosmic rays by the new Tibet hybrid experiment

J. Huang; M. Amenomori; X. J. Bi; D. Chen; T. L. Chen; W. Y. Chen; S. W. Cui; Danzengluobu Na; L. K. Ding; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; Q. B. Gou; Y. Q. Guo; H. H. He; Z. T. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; H. Y. Jia; L. Jiang; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata; M. Kozai; Labaciren na; G. M. Le

The hybrid Tibet AS array was successfully constructed in 2014. It has 4500 m2 underground water Cherenkov pools used as the muon detector (MD) and 789 scintillator detectors covering 36900 m2 as the surface array. At 100 TeV, cosmic-ray background events can be rejected by approximately 99.99%, according to the full Monte Carlo (MC) simulation for γ-ray observations. In order to use the muon detector efficiently, we propose to extend the surface array area to 72900 m2 by adding 120 scintillator detectors around the current array to increase the effective detection area. A new prototype scintillator detector is developed via optimizing the detector geometry and its optical surface, by selecting the reflective material and adopting dynode readout. {This detector can meet our physics requirements with a positional non-uniformity of the output charge within 10% (with reference to the center of the scintillator), time resolution FWHM of ~2.2 ns, and dynamic range from 1 to 500 minimum ionization particles}.


Proceedings of 35th International Cosmic Ray Conference — PoS(ICRC2017) | 2017

Interplanetary Coronal Mass Ejection and the Sun's Shadow Observed by the Tibet Air Shower Array

K. Kawata; M. Amenomori; X. J. Bi; D. Chen; T. L. Chen; W. Y. Chen; S. W. Cui; Danzengluobu; L. K. Ding; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; Q. B. Gou; Y. Q. Guo; H. H. He; Z. T. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; H. Y. Jia; L. Jiang; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; M. Kozai; Labaciren na; G. M. Le

A wide field of view (FOV) is an important feature of a detector in the gamma ray observation of sporadic, extended, and transient sources. In this work, we discuss an atmospheric Cherenkov telescope (ACT) with a refractive water convex lens as its light collector, and we test the feasibility of this new approach. We determine the optical properties of a water lens with a diameter of 0.9 m, such as focal length, spot size, and transmittance. The first detection of cosmic rays (CRs) observed in coincidence with a scintillator extensive air shower (EAS) array is presented and discussed.

Collaboration


Dive into the T. L. Chen's collaboration.

Top Co-Authors

Avatar

S. W. Cui

Hebei Normal University

View shared research outputs
Top Co-Authors

Avatar

Y. Q. Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Z. Y. Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhaoyang Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

H. H. He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

H. Y. Jia

Southwest Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Q. B. Gou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

X. J. Bi

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge