Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. M. Biewer is active.

Publication


Featured researches published by T. M. Biewer.


Review of Scientific Instruments | 2003

Laser polarimetric measurement of equilibrium and fluctuating magnetic fields in a reversed field pinch (invited)

D. L. Brower; W. X. Ding; S. D. Terry; J. K. Anderson; T. M. Biewer; Brett Edward Chapman; D. Craig; Cary Forest; Stewart C. Prager; J.S. Sarff

New developments in Faraday rotation polarimetry have provided the first measurements of current density profile and core magnetic fluctuations in the core of a high-temperature reversed field pinch. This has been achieved by a fast-polarimeter system with time response up to 1 μs and phase resolution <1 mrad. Recent experiments on Madison Symmetric Torus have directly measured radial magnetic field fluctuations in the plasma interior with amplitude 33 G, ∼1%. A broad spectrum of magnetic fluctuations is observed up to 100 kHz. Relaxation of the current density profile at the sawtooth crash occurs on the timescale of 100 μs. Reversed-field pinch behavior is determined in large part by magnetic fluctuations driven by the radial gradient in the parallel current density. Hence, measurement of magnetic fluctuations and the current density profile is essential to understand the link between the current density profile, fluctuations, and transport.


Physics of Plasmas | 2002

High confinement plasmas in the Madison Symmetric Torus reversed-field pinch

Brett Edward Chapman; A. F. Almagri; J. K. Anderson; T. M. Biewer; P. K. Chattopadhyay; C.-S. Chiang; D. Craig; D.J. Den Hartog; G. Fiksel; Cary Forest; A. K. Hansen; D. Holly; Nicholas Edward Lanier; R. O’Connell; Stewart C. Prager; James Christian Reardon; J.S. Sarff; M. D. Wyman; D. L. Brower; W. X. Ding; Y. Jiang; S. D. Terry; P. Franz; L. Marrelli; P. Martin

Reduction of core-resonant m=1 magnetic fluctuations and improved confinement in the Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field pinch have been routinely achieved through control of the surface poloidal electric field, but it is now known that the achieved confinement has been limited in part by edge-resonant m=0 magnetic fluctuations. Now, through refined poloidal electric field control, plus control of the toroidal electric field, it is possible to reduce simultaneously the m=0 and m=1 fluctuations. This has allowed confinement of high-energy runaway electrons, possibly indicative of flux-surface restoration in the usually stochastic plasma core. The electron temperature profile steepens in the outer region of the plasma, and the central electron temperature increases substantially, reaching nearly 1.3 keV at high toroidal plasma current (500 kA). At low current (200 kA), the total beta reaches 15% with an estimated energy confinement time of 10 ms, a tenfold ...


Nuclear Fusion | 2004

Equilibrium reconstruction in the Madison Symmetric Torus reversed field pinch

J. K. Anderson; Cary Forest; T. M. Biewer; J.S. Sarff; John Wright

A non-linear Grad–Shafranov toroidal equilibrium reconstruction code (MSTFit) has been developed for the Madison Symmetric Torus. This is the first such code applied to the unique magnetohydrodynamic (MHD) equilibrium of the reversed field pinch. A new set of toroidal Greens tables have been computed to impose the boundary condition of the close-fitting conducting shell. The non-linear fitting routine is sufficiently versatile for incorporating data from a variety of internal and external diagnostics, including a novel constraint based on orbits from a heavy ion beam probe diagnostic. Utilizing the full complement of internal and external magnetic and pressure diagnostics, MSTFit resolves accurately subtle changes in internal magnetic structure with implications on MHD stability. We show example equilibria that confirm conservation of magnetic helicity during relaxation and two-dimensional equilibrium effects.


Nuclear Fusion | 2003

Tokamak-like confinement at a high beta and low toroidal field in the MST reversed field pinch

J.S. Sarff; A. F. Almagri; J. K. Anderson; T. M. Biewer; Arthur Blair; M. Cengher; Brett Edward Chapman; P. K. Chattopadhyay; D. Craig; D.J. Den Hartog; F. Ebrahimi; G. Fiksel; Cary Forest; J.A. Goetz; D. J. Holly; B. Hudson; Thomas W. Lovell; K.J. McCollam; Paul Nonn; R. O'Connell; S. P. Oliva; Stewart C. Prager; James Christian Reardon; Mike Thomas; M. D. Wyman; D. L. Brower; W. X. Ding; S. D. Terry; Mark Dwain Carter; V. I. Davydenko

Energy confinement comparable with tokamak quality is achieved in the Madison Symmetric Torus (MST) reversed field pinch (RFP) at a high beta and low toroidal magnetic field. Magnetic fluctuations normally present in the RFP are reduced via parallel current drive in the outer region of the plasma. In response, the electron temperature nearly triples and beta doubles. The confinement time increases ten-fold (to ~10 ms), which is comparable with L- and H-mode scaling values for a tokamak with the same plasma current, density, heating power, size and shape. Runaway electron confinement is evidenced by a 100-fold increase in hard x-ray bremsstrahlung. Fokker–Planck modelling of the x-ray energy spectrum reveals that the high energy electron diffusion is independent of the parallel velocity, uncharacteristic of magnetic transport and more like that for electrostatic turbulence. The high core electron temperature correlates strongly with a broadband reduction of resonant modes at mid-radius where the stochasticity is normally most intense. To extend profile control and add auxiliary heating, rf current drive and neutral beam heating are in development. Low power lower-hybrid and electron Bernstein wave injection experiments are underway. Dc current sustainment via ac helicity injection (sinusoidal inductive loop voltages) is also being tested. Low power neutral beam injection shows that fast ions are well-confined, even in the presence of relatively large magnetic fluctuations.


Nuclear Fusion | 2010

Overview of L–H power threshold studies in NSTX

R. Maingi; S.M. Kaye; R.E. Bell; T. M. Biewer; Choong-Seock Chang; D.A. Gates; S.P. Gerhardt; J. C. Hosea; Benoit P. Leblanc; Haakon E. Meyer; D. Mueller; Gunyoung Park; R. Raman; S.A. Sabbagh; T. A. Stevenson; J. R. Wilson

A summary of results from recent L–H power threshold (PLH) experiments in the National Spherical Torus Experiment is presented. First PLH (normalized linearly by plasma density) was found to be a minimum in double-null configuration, tending to increase as the plasma was shifted more strongly towards lower- or upper-single null configuration with either neutral beam or rf heating. The measured PLH/ne was comparable with neutral beam or rf heating, suggesting that rotation was not playing a dominant role in setting the value of PLH. The role of triangularity (δbot) in setting PLH/ne is less clear: while 50% less auxiliary heating power was required to access H-mode at low δbot than at high δbot, the high δbot discharges had lower ohmic heating and higher dW/dt, leading to comparable loss of power over a range of δbot. In addition, the dependences of PLH on the density, species (helium versus deuterium), plasma current, applied non-axisymmetric error fields and lithium wall conditioning are summarized.


Physics of Plasmas | 2002

Quasi-single helicity spectra in the Madison Symmetric Torus

L. Marrelli; P. Martin; G. Spizzo; P. Franz; Brett Edward Chapman; D. Craig; J.S. Sarff; T. M. Biewer; Stewart C. Prager; James Christian Reardon

Evidence of a self-organized collapse towards a narrow spectrum of magnetic instabilities in the Madison Symmetric Torus [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 (1991)] reversed field pinch device is presented. In this collapsed state, dubbed quasi-single helicity (QSH), the spectrum of magnetic modes condenses spontaneously to one dominant mode more completely than ever before observed. The amplitudes of all but the largest of the m=1 modes decrease in QSH states. New results about thermal features of QSH spectra and the identification of global control parameters for their onset are also discussed.


Nuclear Fusion | 2014

L–H power threshold studies in JET with Be/W and C wall

C. F. Maggi; E. Delabie; T. M. Biewer; M. Groth; N. Hawkes; M. Lehnen; E. de la Luna; K. McCormick; C. Reux; F. Rimini; E. R. Solano; Y. Andrew; C. Bourdelle; V. Bobkov; M. Brix; G. Calabrò; A. Czarnecka; J. Flanagan; E. Lerche; S. Marsen; I. Nunes; D. Van Eester; M. Stamp; Jet Efda Contributors

A comparison of the L?H power threshold (Pthr) in JET with all carbon, JET-C, and beryllium/tungsten wall (the ITER-like choice), JET-ILW, has been carried out in experiments with slow input power ramps and matched plasma shapes, divertor configuration and IP/BT pairs. The low density dependence of the L?H power threshold, namely an increase below a minimum density ne,min, which was first observed in JET with the MkII-GB divertor and C wall and subsequently not observed with the current MkII-HD geometry, is observed again with JET-ILW. At plasma densities above ne,min, Pthr is reduced by ?30%, and by ?40% when the radiation from the bulk plasma is subtracted (Psep), with JET-ILW compared to JET-C. At the L?H transition the electron temperature at the edge, where the pedestal later develops, is also lower with JET-ILW, for a given edge density. With JET-ILW the minimum density is found to increase roughly linearly with magnetic field, , while the power threshold at the minimum density scales as . The H-mode power threshold in JET-ILW is found to be sensitive both to variations in main plasma shape (Psep decreases with increasing lower triangularity and increases with upper triangularity) and in divertor configuration. When the data are recast in terms of Psep and Zeff or subdivertor neutral pressure a linear correlation is found, pointing to a possible role of Zeff and/or subdivertor neutral pressure in the L?H transition physics. Depending on the chosen divertor configuration, Pthr can be up to a factor of two lower than the ITPA scaling law for densities above ne,min. A shallow edge radial electric field well is observed at the L?H transition. The edge impurity ion poloidal velocity remains low, close to its L-mode values, ?5?km?s?1???2?3?km?s?1, at the L?H transition and throughout the H-mode phase, with no measureable increase within the experimental uncertainties. The edge toroidal rotation profile does not contribute to the depth of the negative Er well and thus may not be correlated with the formation of the edge transport barrier in JET.


Physics of Plasmas | 2002

Electron Bernstein wave emission from an overdense reversed field pinch plasma

P. K. Chattopadhyay; J. K. Anderson; T. M. Biewer; D. Craig; Cary Forest; R. W. Harvey; A. P. Smirnov

Blackbody levels of emission in the electron cyclotron range of frequencies have been observed from an overdense (ωpe∼3ωce) Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed field pinch plasma, a result of electrostatic electron Bernstein waves emitted from the core and mode converted into electromagnetic waves at the extreme plasma edge. Comparison of the measured radiation temperature with profiles measured by Thomson scattering indicates that the mode conversion efficiency can be as high as ∼75%. Emission is preferentially in the X-mode polarization, and is strongly dependent upon the density and magnetic field profiles at the mode conversion point.


Plasma Physics and Controlled Fusion | 2007

Active control of type-I edge localized modes on JET

Y. Liang; H. R. Koslowski; P.R. Thomas; E. Nardon; S. Jachmich; B. Alper; P. Andrew; Y. Andrew; G. Arnoux; Y. Baranov; M. Becoulet; M. Beurskens; T. M. Biewer; M. Bigi; Kristel Crombé; E. de la Luna; P. de Vries; T. Eich; H.G. Esser; W. Fundamenski; S. Gerasimov; C. Giroud; M. Gryaznevich; D. Harting; N. Hawkes; S. Hotchin; D. Howell; A. Huber; M. Jakubowski; V. Kiptily

The operational domain for active control of type-I edge localized modes (ELMs) with an n = 1 external magnetic perturbation field induced by the ex-vessel error field correction coils on JET has been developed towards more ITER-relevant regimes with high plasma triangularity, up to 0.45, high normalized beta, up to 3.0, plasma current up to 2.0 MA and q95 varied between 3.0 and 4.8. The results of ELM mitigation in high triangularity plasmas show that the frequency of type-I ELMs increased by a factor of 4 during the application of the n = 1 fields, while the energy loss per ELM, ΔW/W, decreased from 6% to below the noise level of the diamagnetic measurement (<2%). No reduction of confinement quality (H98Y) during the ELM mitigation phase has been observed. The minimum n = 1 perturbation field amplitude above which the ELMs were mitigated increased with a lower q95 but always remained below the n = 1 locked mode threshold. The first results of ELM mitigation with n = 2 magnetic perturbations on JET demonstrate that the frequency of ELMs increased from 10 to 35 Hz and a wide operational window of q95 from 4.5 to 3.1 has been found.


Physics of Plasmas | 2006

Characterization of small, Type V edge-localized modes in the National Spherical Torus Experiment

R. Maingi; M.G. Bell; E. D. Fredrickson; K.C. Lee; R. Maqueda; P.B. Snyder; K. Tritz; S.J. Zweben; R.E. Bell; T. M. Biewer; C.E. Bush; J.A. Boedo; N. H. Brooks; L. Delgado-Aparicio; C. W. Domier; D.A. Gates; D. Johnson; R. Kaita; S.M. Kaye; H. W. Kugel; Benoit P. Leblanc; N.C. Luhmann; J. Menard; D. Mueller; H. Park; R. Raman; A.L. Roquemore; S.A. Sabbagh; V. Soukhanovskii; T. Stevenson

There has been a substantial international research effort in the fusion community to identify tokamak operating regimes with either small or no periodic bursts of particles and power from the edge plasma, known as edge-localized modes (ELMs). While several candidate regimes have been presented in the literature, very little has been published on the characteristics of the small ELMs themselves. One such small ELM regime, also known as the Type V ELM regime, was recently identified in the National Spherical Torus Experiment [M. Ono, S. M. Kaye, Y.-K. M. Peng et al., Nucl. Fusion 40, 557 (2000)]. In this paper, the spatial and temporal structure of the Type V ELMs is presented, as measured by several different diagnostics. The composite picture of the Type V ELM is of an instability with one or two filaments that rotate toroidally at ∼5–10km∕s, in the direction opposite to the plasma current and neutral beam injection. The toroidal extent of Type V ELMs is typically ∼5m, whereas the cross-field (radial) ex...

Collaboration


Dive into the T. M. Biewer's collaboration.

Top Co-Authors

Avatar

Stewart C. Prager

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

J. B. O. Caughman

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. H. Goulding

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. K. Anderson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

J. Rapp

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. Craig

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

J.S. Sarff

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Brett Edward Chapman

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

R. Kaita

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. L. Hillis

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge