Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Mahmood is active.

Publication


Featured researches published by T. Mahmood.


Biology and Fertility of Soils | 2004

Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress

Muhammad Yasin Ashraf; Shahida Hasnain; Odile Berge; T. Mahmood

A pot experiment was conducted to elucidate the effects of inoculating five exopolysaccharide- (EPS-) producing bacterial strains on the dry matter yield and the uptake of K+, Na+, and Ca2+ by wheat seedlings grown in a moderately saline soil. The bacteria were isolated from the rhizosphere soil (RS) of wheat grown in a salt-affected soil and included Aeromonas hydrophila/caviae (strain MAS-765), Bacillus insolitus (strain MAS17), and Bacillus sp. (strains MAS617, MAS620 and MAS820). The inoculation substantially increased the dry matter yield of roots (149–527% increase) and shoots (85–281% increase), and the mass of RS (176–790% increase). All the strains, except MAS617, also increased the RS mass/root mass ratio as well as the population density of EPS bacteria on the rhizoplane, and both these parameters were significantly correlated with the content of water-insoluble saccharides in the RS. Inoculation restricted Na+ uptake by roots, which was not attributable to the binding of Na+ by the RS, or to the ameliorative effects of Ca2+ under salinity. The decreased Na+ uptake by roots of inoculated than uninoculated plants was probably caused by a reduced passive (apoplasmic) flow of Na+ into the stele due to the higher proportion of the root zones covered with soil sheaths in inoculated treatments. Among the strains tested, MAS820 was the most efficient in all respects, whereas MAS617 was the least effective. Results suggested that inoculating selected EPS-producing bacteria could serve as a useful tool for alleviating salinity stress in salt-sensitive plants.


Biology and Fertility of Soils | 1998

Nitrous oxide emissions from an irrigated sandy-clay loam cropped to maize and wheat

T. Mahmood; Rehmat Ali; K. A. Malik; S. R. A. Shamsi

Abstract Nitrous oxide (N2O) emissions were measured from an irrigated sandy-clay loam cropped to maize and wheat, each receiving urea at 100 kg N ha–1. During the maize season (24 August–26 October), N2O emissions ranged between –0.94 and 1.53 g N ha–1 h–1 with peaks during different irrigation cycles (four) ranging between 0.08 and 1.53 g N ha–1 h–1. N2O sink activity during the maize season was recorded on 10 of the 29 sampling occasions and ranged between 0.18 and 0.94 g N ha–1 h–1. N2O emissions during the wheat season (22 November–20 April) varied between –0.85 and 3.27 g N ha–1 h–1, whereas peaks during different irrigation cycles (six) were in the range of 0.05–3.27 g N ha–1 h–1. N2O sink activity was recorded on 14 of the 41 samplings during the wheat season and ranged between 0.01 and 0.87 g N ha–1 h–1. Total N2O emissions were 0.16 and 0.49 kg N ha–1, whereas the total N2O sink activity was 0.04 and 0.06 kg N ha–1 during the maize and wheat seasons, respectively. N2O emissions under maize were significantly correlated with denitrification rate and soil NO3–-N but not with soil NH4+-N or soil temperature. Under wheat, however, N2O emissions showed a strong correlation with soil NH4+-N, soil NO3–-N and soil temperature but not with the denitrification rate. Under either crop, N2O emissions did not show a significant relationship with water-filled pore space or soil respiration.


Biology and Fertility of Soils | 1997

Carbon availability and microbial biomass in soil under an irrigated wheat-maize cropping system receiving different fertilizer treatments

T. Mahmood; F. Azam; Faqir Hussain; K. A. Malik

Abstract Seasonal changes in carbon availability and microbial biomass were studied in soil under an irrigated wheat-maize cropping system receiving different fertilizter treatments over the past 10 years. Treatments included N-100 and N-200 (urea at 100 and 200kgNha–1 year–1, respectively), FYM-16 and FYM-32 (farmyard manure at 16 and 32tha–1 year–1, respectively) and a control (unfertilized). Aerobically mineralizable carbon (AMC; C mineralized after 10 days aerobic incubation at 30°C) increased (13–16%) under wheat at both rates of urea whereas under maize it increased (22%) only with the lower rate of urea. Farmyard manure also increased the content of soil AMC under both crops, the effect being two- to threefold higher under wheat than under maize. Urea application caused an 32–78% increase in the specific respiratory activity (SRA) under wheat but caused an 11–50% decrease during the maize season. Farmyard manure also resulted in a higher SRA under both crops but only at the higher application rate. Under wheat, microbial biomass C (MBC) decreased in urea-treated plots but showed a slight increase at the higher rate of FYM. During the maize season, MBC was higher under both urea (42–46%) and FYM (36–47%) treatments as compared to the control. Microbial biomass turnover rate was highest for FYM-32 (2.08), followed by FYM-16 and urea treatments (1.35–1.49); control plots showed a turnover rate of 0.82. The higher AMC and SRA during the active growth period of wheat than that of maize indicated that root-derived C from wheat was higher in amount and more easily degradable.


Plant and Soil | 1988

Inmobilization-remineralization of NO3-N and total N balance during the decomposition of glucose, sucrose and cellulose in soil incubated at different moisture regimes

F. Azam; T. Mahmood; Kauser A. Malik

A laboratory incubation experiment was conducted to study the effect of organic amendment and moisture regimes on the immobilization-remineralization of NO3-N and total N balance in soil fertilized with KNO3. Immobilization of NO3-N was very rapid in soil amended with glucose and sucrose followed by a remineralization of organic N and accumulation of mineral N. Cellulose caused a slow but continued immobilization and did not show net accumulation of mineral N during 8 weeks of incubation. At the end of incubation, a significant increase in total N and organic N content of the soil was observed which is perhaps attributable to the activity of free living N2 fixers. Although N losses seemed to have occurred at 100% WHC through denitrification in soil amended with glucose and sucrose, main cause of NO3 elimination was microbial immobilization.


Plant and Soil | 1998

Denitrification and total N losses from an irrigated sandy-clay loam under maize-wheat cropping system

T. Mahmood; K. A. Malik; S. R. A. Shamsi; M. I. Sajjad

Denitrification and total N losses were quantified from an irrigated field cropped to maize and wheat, each receiving urea at 100 kg N ha-1. During the maize growing season (60 days), the denitrification loss measured directly by acetylene inhibition-soil cover method amounted 2.72 kg N ha-1 whereas total N loss measured by 15N balance was 39 kg ha-1. Most (87%) of the denitrification loss under maize occurred during the first two irrigation cycles. During the wheat growing season (150 days), the denitrification loss directly measured by acetylene inhibition-soil cover and acetylene inhibition-soil core methods was 1.14 and 3.39 kg N ha-1, respectively in contrast to 33 kg N ha-1 loss measured by 15N balance. Most (70-88%) of the denitrification loss under wheat occurred during the first three irrigation cycles. Soil moisture and NO3--N were the major factors limiting denitrification under both crops. Higher N losses measured by 15N balance than C2H2 inhibition method were perhaps due to underestimation of denitrification by C2H2 inhibition method and losses other than denitrification, most probably NH3 volatilization.


Biology and Fertility of Soils | 1997

Denitrification with and without maize plants (Zea mays L.) under irrigated field conditions

T. Mahmood; Rehmat Ali; K. A. Malik; S. R. A. Shamsi

Abstract The study was conducted under irrigated field conditions to examine the effect of maize plants on denitrification. Both planted and unplanted field plots received 150kgNha–1 as urea. In a third treatment, which was also planted and received urea at 150kgNha–1, the soil nitrate N content was brought up to equal to that in the unplanted plots by applying additional doses of N as calcium nitrate. Soil cores were collected 24 and 72h after irrigation and the denitrification rate was measured by the acetylene inhibition method. Nitrate-N content, aerobically mineralizable C, microbial biomass carrying capacity and denitrification potential were also studied on field-moist soil. Maize plants grown under field conditions always had the potential to increase denitrification in conditions of both high and low water-filled porosity. When nitrate-N content of the planted soil decreased due to plant uptake, denitrification was reduced in the planted soils. However, when nitrate-N uptake by plants was compensated through additional doses of nitrate fertilizer, denitrification was always higher in planted than unplanted soil. The stimulatory effect of plants on denitrification was observed at both high and low soil nitrate-N concentrations, though it was more pronounced at high nitrate-N levels. The effect of plants on denitrification and related parameters was confined to the root zone.


Biology and Fertility of Soils | 2000

Denitrification and total fertilizer-N losses from an irrigated cotton field

T. Mahmood; Rehmat Ali; M. I. Sajjad; M. B. Chaudhri; G. R. Tahir; F. Azam

Abstract In a 2-year field study, denitrification loss was measured from an irrigated sandy-clay loam under cotton receiving urea-N at 158–173 kg ha–1. An acetylene inhibition-soil core method was employed for the direct measurement of denitrification, considering also the N2O entrapped in the soil. Taking into account the N2O evolved from soil cores and that entrapped in the soil, a total of 65.7 kg N ha–1 and 64.4 kg N ha–1 was lost due to denitrification during the 1995 and 1996 cotton-growing seasons, respectively. Most (>70%) of the denitrification loss occurred during June–August, a period characterized by high soil temperatures and heavy monsoon rains. On average, 35% of the denitrification-N2O was found entrapped in the soil and the amount of entrapped N2O was significantly correlated with head space N2O concentration and with water-filled pore space. 15N-balance during the 1996 growing season revealed a loss of 71.8 kg N ha–1. It was concluded that a substantial proportion of the fertilizer-N applied to irrigated cotton is lost under the semiarid subtropical climatic conditions prevailing in the Central Punjab region of Pakistan and that denitrification is the major N loss process under irrigated cotton in this region.


Biology and Fertility of Soils | 2011

Dicyandiamide increases the fertilizer N loss from an alkaline calcareous soil treated with 15N-labelled urea under warm climate and under different crops

T. Mahmood; Rehmat Ali; Zahid Latif; Wajid Ishaque

Using an alkaline calcareous soil, experiments were conducted to elucidate the effects of nitrification inhibitor dicyandiamide (DCD) on the fate of 15N-labelled urea applied to cotton, maize, and wheat under greenhouse conditions. Combined effects of DCD and two levels of wheat straw (applied to cotton) and of fertilizer application method (conventional broadcast vs. point injection in maize and wheat) on the recovery of the fertilizer N were also studied. High soil temperatures prevailed under cotton and maize, whereas the soil temperature was relatively moderate during the wheat growing season. The fertilizer N loss under cotton was lowest (44% of the applied) when urea was applied alone; the loss increased due to DCD (54%) or wheat straw (50–54%) and was highest (63–64%) when DCD and wheat straw were applied together. Under maize also, DCD increased the loss of the fertilizer N applied by the conventional method (51% without DCD vs. 66% with DCD) or by point injection (26% without DCD vs. 42% with DCD). With the conventional method under wheat, DCD had no effect on the fertilizer N loss (34–37% of the applied). The fertilizer N loss under wheat was least (16%) when urea solution was point-injected but increased (24–26%) due to DCD or/and when pH of the urea solution was reduced to 2. Besides, DCD significantly reduced the fertilizer N uptake and increased the fertilizer N immobilization in soil under cotton and maize. However, DCD applied in combination with a higher level of wheat straw significantly increased the cotton dry matter and N yields due to increased N availability from sources other than the fertilizer. The results suggested that the use of DCD may not be beneficial in alkaline calcareous soils and that point injection of urea solution without any amendment is more effective in conserving the fertilizer N as compared to the conventional broadcast method.


Biology and Fertility of Soils | 2008

Nitrous oxide emission from an irrigated cotton field under semiarid subtropical conditions

T. Mahmood; Rehmat Ali; Javed Iqbal; Ume Robab

In a 1-year study, quantification of nitrous oxide (N2O) emission was made from a flood-irrigated cotton field fertilized with urea at 100kg N ha−1 a−1. Measurements were made during the cotton-growing season (May–November) and the fallow period (December–April). Of the total 95 sampling dates, 77 showed positive N2O fluxes (range, 0.1 to 33.3g N ha−1 d−1), whereas negative fluxes (i.e., N2O sink activity) were recorded on 18 occasions (range, −0.1 to −2.2g N ha−1 d−1). Nitrous oxide sink activity was more frequently observed during the growing season (15 out of 57 sampling dates) as compared to the fallow period (3 out of 38 sampling dates). During the growing season, contribution of N2O to the denitrification gaseous N products was much less (average, 4%) as compared to that during the fallow period (average, 21%). Nitrous oxide emission integrated over the 6-month growing period amounted 324g N ha−1, whereas the corresponding figure for the 6-month fallow period was 648g N ha−1. Subtracting the N2O sink activity (30.3g N ha−1 and 3.8g N ha−1 during the growing season and fallow period, respectively), the net N2O emission amounted 938g N ha−1 a−1. Results suggested that high soil moisture and temperature prevailing under flood-irrigated cotton in the Central Punjab region of Pakistan though favor high denitrification rates, but are also conducive to N2O reduction thus leading to relatively low N2O emission.


Biology and Fertility of Soils | 1997

Denitrification losses from an irrigated sandy-clay loam under a wheat-maize cropping system receiving different fertilizer treatments

T. Mahmood; G. R. Tahir; K. A. Malik; S. R. A. Shamsi

Abstract Studies were conducted on denitrification in the plough layer of an irrigated sandy-clay loam under a wheat-maize cropping system receiving different fertilizer treatments. The treatments were: N-100 (urea-N at 100kgha–1year–1), N-200 (urea-N at 200kgha–1year–1), FYM-16 (farmyard manure at 16 tonnes ha–1year–1), FYM-32 (farmyard manure at 32 tonnesha–1year–1) and the control (unfertilized). Averaged across sampling dates during the wheat season, the denitrification rate as measured by the C2H2-inhibition/soil-core incubation method was highest in N-200 (83gNha–1day–1), followed by FYM-32 (60gNha–1day–1, N-100 (51gNha–1day–1), FYM-16 (47gNha–1day–1) and the control (33gNha–1 day–1). During the maize growing season, average denitrification rate was highest in FYM-32 (525gNha–1day–1), followed by FYM-16 (408gNha–1day–1), N-200 (372gNha–1day–1, N-100 (262gNha–1day–1) and the control (203gNha–1day–1). Denitrification loss integrated over the whole vegetation period was at a maximum under FYM-32 (13.9kgNha–1), followed by N-200 (11.8kgNha–1), FYM-16 (10.6kgNha–1) and N-100 (8.0kgNha–1), whereas the minimum was observed for the control (5.8kgNha–1). Under both crops, denitrification was significantly correlated with water-filled pore space and soil NO3–-N. The best multiple regression models accounted for 52% and 70% of the variability in denitrification under wheat and maize, respectively. Results indicated that denitrification is not an important N loss mechanism in this well-drained, irrigated sandy-clay loam under a wheat-maize cropping system receiving fertilizer inputs in the range of 100–200kgNha–1year–1.

Collaboration


Dive into the T. Mahmood's collaboration.

Top Co-Authors

Avatar

Rehmat Ali

Nuclear Institute for Agriculture and Biology

View shared research outputs
Top Co-Authors

Avatar

F. Azam

Nuclear Institute for Agriculture and Biology

View shared research outputs
Top Co-Authors

Avatar

K. A. Malik

Forman Christian College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kauser A. Malik

Nuclear Institute for Agriculture and Biology

View shared research outputs
Top Co-Authors

Avatar

Muhammad Yasin Ashraf

Nuclear Institute for Agriculture and Biology

View shared research outputs
Top Co-Authors

Avatar

Faqir Hussain

Nuclear Institute for Agriculture and Biology

View shared research outputs
Top Co-Authors

Avatar

G. R. Tahir

Nuclear Institute for Agriculture and Biology

View shared research outputs
Top Co-Authors

Avatar

Javed Iqbal

University of the Punjab

View shared research outputs
Top Co-Authors

Avatar

A. Gulnaz

Nuclear Institute for Agriculture and Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge