T. Marchenko
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. Marchenko.
Science | 2011
Y. Huismans; Arnaud Rouzée; A. Gijsbertsen; Julia H. Jungmann; A. S. Smolkowska; P. S. W. M. Logman; F. Lépine; C. Cauchy; S. Zamith; T. Marchenko; Joost M. Bakker; Giel Berden; B. Redlich; A. F. G. van der Meer; Harm Geert Muller; W Vermin; K. J. Schafer; Michael Spanner; M. Yu. Ivanov; Olga Smirnova; D. Bauer; S V Popruzhenko; M. J. J. Vrakking
The intefererence pattern produced by photoelectrons provides holographic snapshots of the photoionization process. Ionization is the dominant response of atoms and molecules to intense laser fields and is at the basis of several important techniques, such as the generation of attosecond pulses that allow the measurement of electron motion in real time. We present experiments in which metastable xenon atoms were ionized with intense 7-micrometer laser pulses from a free-electron laser. Holographic structures were observed that record underlying electron dynamics on a sublaser-cycle time scale, enabling photoelectron spectroscopy with a time resolution of almost two orders of magnitude higher than the duration of the ionizing pulse.
Physical Review Letters | 2013
Kirsten Schnorr; Arne Senftleben; M. Kurka; A. Rudenko; Lutz Foucar; Georg H. Schmid; Alexander Broska; Thomas Pfeifer; Kristina Meyer; Denis Anielski; Rebecca Boll; Daniel Rolles; Matthias Kübel; Matthias F. Kling; Y. H. Jiang; S. Mondal; T. Tachibana; K. Ueda; T. Marchenko; Marc Simon; G. Brenner; Rolf Treusch; S. Scheit; V. Averbukh; J. Ullrich; C. D. Schröter; R. Moshammer
The lifetime of interatomic Coulombic decay (ICD) [L. S. Cederbaum et al., Phys. Rev. Lett. 79, 4778 (1997)] in Ne2 is determined via an extreme ultraviolet pump-probe experiment at the Free-Electron Laser in Hamburg. The pump pulse creates a 2s inner-shell vacancy in one of the two Ne atoms, whereupon the ionized dimer undergoes ICD resulting in a repulsive Ne+(2p(-1))-Ne+(2p(-1)) state, which is probed with a second pulse, removing a further electron. The yield of coincident Ne+-Ne2+ pairs is recorded as a function of the pump-probe delay, allowing us to deduce the ICD lifetime of the Ne2(+)(2s(-1)) state to be (150±50) fs, in agreement with quantum calculations.
Science | 2014
Benjamin Erk; Rebecca Boll; Sebastian Trippel; Denis Anielski; Lutz Foucar; Benedikt Rudek; Sascha W. Epp; Ryan Coffee; Sebastian Carron; Sebastian Schorb; Ken R. Ferguson; Michele Swiggers; John D. Bozek; Marc Simon; T. Marchenko; Jochen Küpper; Ilme Schlichting; Joachim Ullrich; Christoph Bostedt; Daniel Rolles; Artem Rudenko
Tightly tracking charge migration Electron transfer dynamics underlie many chemical and biochemical reactions. Erk et al. examined the charge migration between individual carbon and iodine atoms during dissociation of iodomethane (ICH3) molecules (see the Perspective by Pratt). After initiating scission of the C-I bond with a relatively low-energy laser pulse, they introduced a higher-energy x-ray pulse to instigate ionization and charge migration. Delaying the arrival time of the x-ray pulse effectively varied the separation distance being probed as the fragments steadily drifted apart. The experimental approach should also prove useful for future studies of charge transfer dynamics in different molecular or solid-state systems. Science, this issue p. 288; see also p. 267 A free-electron laser enables precise tracking of electron movement between segments of a dissociating molecule. [Also see Perspective by Pratt] Studies of charge transfer are often hampered by difficulties in determining the charge localization at a given time. Here, we used ultrashort x-ray free-electron laser pulses to image charge rearrangement dynamics within gas-phase iodomethane molecules during dissociation induced by a synchronized near-infrared (NIR) laser pulse. Inner-shell photoionization creates positive charge, which is initially localized on the iodine atom. We map the electron transfer between the methyl and iodine fragments as a function of their interatomic separation set by the NIR–x-ray delay. We observe signatures of electron transfer for distances up to 20 angstroms and show that a realistic estimate of its effective spatial range can be obtained from a classical over-the-barrier model. The presented technique is applicable for spatiotemporal imaging of charge transfer dynamics in a wide range of molecular systems.
Nature | 2017
A. Rudenko; L. Inhester; K. Hanasaki; Xuanxuan Li; S. J. Robatjazi; Benjamin Erk; Rebecca Boll; Koudai Toyota; Y. Hao; O. Vendrell; Cédric Bomme; Evgeny Savelyev; Benedikt Rudek; Lutz Foucar; Stephen H. Southworth; C. S. Lehmann; B. Kraessig; T. Marchenko; M. Simon; K. Ueda; Ken R. Ferguson; Maximilian Bucher; Tais Gorkhover; S. Carron; Roberto Alonso-Mori; Jason E. Koglin; J. Correa; Garth J. Williams; Sébastien Boutet; Linda Young
X-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 1020 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecular system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects—an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure—the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 1020 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is considerably enhanced compared to that of an individual heavy atom with the same absorption cross-section. This enhancement is driven by ultrafast charge transfer within the molecule, which refills the core holes that are created in the heavy atom, providing further targets for inner-shell ionization and resulting in the emission of more than 50 electrons during the X-ray pulse. Our results demonstrate that efficient modelling of X-ray-driven processes in complex systems at ultrahigh intensities is feasible.
Journal of Chemical Physics | 2011
T. Marchenko; Loïc Journel; T. Marin; Renaud Guillemin; S. Carniato; M. Žitnik; M. Kavčič; K. Bučar; A. Mihelič; J. Hoszowska; Wei Cao; Marc Simon
We present measurements of the resonant inelastic x-ray scattering (RIXS) spectra of the CH(3)I molecule in the hard-x-ray region near the iodine L(2) and L(3) absorption edges. We show that dispersive RIXS spectral features that were recognized as a fingerprint of dissociative molecular states can be interpreted in terms of ultrashort natural lifetime of ∼200 attoseconds in the case of the iodine L-shell core-hole. Our results demonstrate the capacity of the RIXS technique to reveal subtle dynamical effects in molecules with sensitivity to nuclear rearrangement on a subfemtosecond time scale.
Nature Communications | 2015
Renaud Guillemin; P. Decleva; M. Stener; Cédric Bomme; T. Marin; L. Journel; T. Marchenko; R. K. Kushawaha; K. Jänkälä; N. Trcera; K. P. Bowen; Dennis W. Lindle; Maria Novella Piancastelli; M. Simon
Electronic core levels in molecules are highly localized around one atomic site. However, in single-photon ionization of symmetric molecules, the question of core-hole localization versus delocalization over two equivalent atoms has long been debated as the answer lies at the heart of quantum mechanics. Here, using a joint experimental and theoretical study of core-ionized carbon disulfide (CS2), we demonstrate that it is possible to experimentally select distinct molecular-fragmentation pathways in which the core hole can be considered as either localized on one sulfur atom or delocalized between two indistinguishable sulfur atoms. This feat is accomplished by measuring photoelectron angular distributions within the frame of the molecule, directly probing entanglement or disentanglement of quantum pathways as a function of how the molecule dissociates.
Optics Letters | 2010
P. Johnsson; Arnaud Rouzée; W. Siu; Y. Huismans; F. Lépine; T. Marchenko; S. Düsterer; F. Tavella; N. Stojanovic; H. Redlin; A. Azima; Marcus Vrakking
We report on the implementation of a high-count-rate charged particle imaging detector for two-color pump-probe experiments at the free electron laser in Hamburg (FLASH). In doing so, we have developed a procedure for finding the spatial and temporal overlap between the extreme UV free electron laser (FEL) pulses and the IR pulses, which allows for complete alignment of the setup in situations where the region of overlap between the FEL and the IR is not easily accessible by means of imaging optics.
Structural Dynamics | 2016
Rebecca Boll; Benjamin Erk; Ryan Coffee; Sebastian Trippel; Thomas Kierspel; Cédric Bomme; John D. Bozek; Mitchell Burkett; Sebastian Carron; Ken R. Ferguson; Lutz Foucar; Jochen Küpper; T. Marchenko; Catalin Miron; M. Patanen; T. Osipov; Sebastian Schorb; Marc Simon; M. Swiggers; Simone Techert; K. Ueda; Christoph Bostedt; Daniel Rolles; Artem Rudenko
Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I21+. The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse.
Journal of Chemical Physics | 2013
R. Bohinc; M. Žitnik; K. Bučar; M. Kavčič; L. Journel; Renaud Guillemin; T. Marchenko; Marc Simon; Wei Cao
The dissociation process following the Cl K-shell excitation to σ* resonances is studied by high resolution spectroscopy of resonant elastic and inelastic x-ray scattering on CH3Cl, CH2Cl2, CHCl3, and CCl4 molecules. Calculations employing the transition potential and Delta-Kohn-Sham DFT approach are in good agreement with the measured total fluorescence yield and show the presence of a second quasidegenerate group of states with σ* character above the lowest σ* unoccupied molecular orbital for molecules with more than one Cl atom. A bandwidth narrowing and a nonlinear dispersion behavior is extracted from the Kα spectral maps for both σ* resonances. The fitted data indicate that the widths of the Franck-Condon distributions for the first and second σ* resonances are comparable for all the molecules under study. In addition, an asymmetric broadening of the emission peaks is observed for resonant elastic x-ray scattering with zero detuning on both σ* resonances. This is attributed to the fast dissociation, transferring about 0.15 of the scattering probability into higher vibrational modes.
Nature Communications | 2014
Marc Simon; R. Püttner; T. Marchenko; Renaud Guillemin; R. K. Kushawaha; L. Journel; G. Goldsztejn; Maria Novella Piancastelli; James M. Ablett; Jean-Pascal Rueff; Denis Céolin
Studies of photoemission processes induced by hard X-rays including production of energetic electrons have become feasible due to recent substantial improvement of instrumentation. Novel dynamical phenomena have become possible to investigate in this new regime. Here we show a significant change in Auger emission following 1s photoionization of neon, which we attribute to the recoil of the Ne ion induced by the emission of a fast photoelectron. Because of the preferential motion of the ionized Ne atoms along two opposite directions, an Auger Doppler shift is revealed, which manifests itself as a gradual broadening and doubling of the Auger spectral features. This Auger Doppler effect should be a general phenomenon in high-energy photoemission of both isolated atoms and molecules, which will have to be taken into account in studies of other recoil effects such as vibrational or rotational recoil in molecules, and may also have consequences in measurements in solids.