Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Matthew Robson is active.

Publication


Featured researches published by T. Matthew Robson.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Incorporating plant functional diversity effects in ecosystem service assessments

Sandra Díaz; Sandra Lavorel; Francesco de Bello; Karl Grigulis; T. Matthew Robson

Global environmental change affects the sustained provision of a wide set of ecosystem services. Although the delivery of ecosystem services is strongly affected by abiotic drivers and direct land use effects, it is also modulated by the functional diversity of biological communities (the value, range, and relative abundance of functional traits in a given ecosystem). The focus of this article is on integrating the different possible mechanisms by which functional diversity affects ecosystem properties that are directly relevant to ecosystem services. We propose a systematic way for progressing in understanding how land cover change affects these ecosystem properties through functional diversity modifications. Models on links between ecosystem properties and the local mean, range, and distribution of plant trait values are numerous, but they have been scattered in the literature, with varying degrees of empirical support and varying functional diversity components analyzed. Here we articulate these different components in a single conceptual and methodological framework that allows testing them in combination. We illustrate our approach with examples from the literature and apply the proposed framework to a grassland system in the central French Alps in which functional diversity, by responding to land use change, alters the provision of ecosystem services important to local stakeholders. We claim that our framework contributes to opening a new area of research at the interface of land change science and fundamental ecology.


Plant Cell and Environment | 2015

Re‐interpreting plant morphological responses to UV‐B radiation

T. Matthew Robson; Karel Klem; Otmar Urban; Marcel A. K. Jansen

There is a need to reappraise the effects of UV-B radiation on plant morphology in light of improved mechanistic understanding of UV-B effects, particularly elucidation of the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor. We review responses at cell and organismal levels, and explore their underlying regulatory mechanisms, function in UV protection and consequences for plant fitness. UV-induced morphological changes include thicker leaves, shorter petioles, shorter stems, increased axillary branching and altered root:shoot ratios. At the cellular level, UV-B morphogenesis comprises changes in cell division, elongation and/or differentiation. However, notwithstanding substantial new knowledge of molecular, cellular and organismal UV-B responses, there remains a clear gap in our understanding of the interactions between these organizational levels, and how they control plant architecture. Furthermore, despite a broad consensus that UV-B induces relatively compact architecture, we note substantial diversity in reported phenotypes. This may relate to UV-induced morphological changes being underpinned by different mechanisms at high and low UV-B doses. It remains unproven whether UV-induced morphological changes have a protective function involving shading and decreased leaf penetration of UV-B, counterbalancing trade-offs such as decreased photosynthetic light capture and plant-competitive abilities. Future research will need to disentangle seemingly contradictory interactions occurring at the threshold UV dose where regulation and stress-induced morphogenesis overlap.


Tree Physiology | 2010

Thermal acclimation of leaf dark respiration of beech seedlings experiencing summer drought in high and low light environments

Jesús Rodríguez-Calcerrada; Owen K. Atkin; T. Matthew Robson; Joana Zaragoza-Castells; Luis Gil; Ismael Aranda

Little is known about how environmental factors shape the short- and long-term responses of leaf respiration to temperature under field conditions despite the importance of respiration for plant and stand carbon balances. Impacts of water availability and canopy cover on leaf dark respiration (R) and temperature sensitivity were assessed in beech (Fagus sylvatica L.) seedlings in a sub-Mediterranean population. We studied seedlings established within canopy gaps (39% global site factor; GSF) that were subject to either no watering (unwatered plants; UW) or regular watering (2-10% higher volumetric topsoil water content as summer progressed; W plants) and seedlings established beneath the adjacent understorey (12% GSF). Leaf R rose exponentially with diurnal increases in temperature; the same temperature sensitivity (Q(10): 2.2) was found for understorey and gap plants, irrespective of watering treatment. Respiration estimated at 25 degrees C (R(25)) was lower in the understorey than the gaps and was significantly lower in the unwatered than in the watered gap plants by the end of summer (0.65 versus 0.80 micromol m(-2) s(-1)). R(25) declined with increasing summer temperature in all plants; however, respiration estimated at the prevailing ambient temperature did not change through the summer. There were parallel declines in R(25) and concentrations of starch and soluble sugars with increasing summer temperature for gap plants. We conclude that seasonal shifts in temperature-response curves of beech leaf R occur in both low- and high-light environments; since leaf R decreased with increasing plant water deficit, such shifts are likely to be greater whenever plants experience summer drought compared to scenarios where plants experience high rainfall in summer.


Tree Genetics & Genomes | 2012

Variation in functional leaf traits among beech provenances during a Spanish summer reflects the differences in their origin

T. Matthew Robson; David Sánchez-Gómez; F. Javier Cano; Ismael Aranda

We assessed the response of 11-year-old saplings from six beech provenances growing in a common-garden trial at the southwestern range limit. Provenances from distinct climatic regions across the European beech distribution were selected. The local Spanish provenance appeared well suited to the site conditions, maintaining high rates of assimilation even in midsummer, but so did the provenance of southern continental origin, from Gotze-Delchev, Bulgaria. Those provenances from cooler sites in central Europe, a continental mountain climate in the Czech Republic and a continental range-edge site in eastern Poland, along with a German provenance of mild maritime origin, had good physiological functionality in early summer but reduced carbon assimilation (Aarea) and apparent soil–leaf hydraulic conductivity (KL) in midsummer. The northern maritime provenance from Sweden demonstrated severely-reduced photosynthetic capacity. These groupings of provenances according to their photosynthetic performance, stable carbon isotope composition (δ13C; a proxy for water-use efficiency) and leaf water potential under marginal conditions, during late summer in the trial, suggest that they have divergent strategies for water use. The research highlights large intraspecific differences among beech provenances of distinct origin and strategies which are expected to modify their response to drought, requiring future genetic studies to explicitly determine the basis of this ecophysiological differentiation.


Tree Physiology | 2008

Summer drought impedes beech seedling performance more in a sub-Mediterranean forest understory than in small gaps.

T. Matthew Robson; Jesús Rodríguez-Calcerrada; David Sánchez-Gómez; Ismael Aranda

Refugia of mixed beech forest persist in the central mountains of the Iberian Peninsula at the south-western limit of European beech (Fagus sylvatica L.) distribution. The lack of beech regeneration is a concern in this region that has experienced reduced rainfall and higher temperatures over the past 30 years. Beech is considered especially susceptible to climate change because of its conservative shade-tolerant growth strategy; hence seedling responses to drought stress in gaps and in the understory are of particular interest. During the summer of 2007, a watering treatment raised the soil water content by up to 5% in gap and understory plots of beech seedlings in a mixed beech forest. Root-collar diameter was increased by our watering treatment in understory seedlings. Neither drought-avoidance through stomatal closure nor physiological drought-tolerance mechanisms were able to mitigate the effects of water stress in the understory seedlings, whereas osmotic adjustment enhanced the ability of the gap seedlings to tolerate water stress. Overall, high photosynthetic rates in the gaps, despite the photoinhibitory effects of high radiation, allowed gap seedlings to survive and grow better than the understory seedlings irrespective of water availability. Our results indicate that further intensification of summer drought, predicted for the Iberian Peninsula, will hinder the establishment of a beech seedling bank in the understory because of the conflicting seedling trait responses to simultaneously withstand water stress and to tolerate shade.


Plant Cell and Environment | 2015

Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation

Sari Siipola; Titta Kotilainen; Nina Sipari; Luis O. Morales; Anders Lindfors; T. Matthew Robson; Pedro J. Aphalo

Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors.


Plant Physiology and Biochemistry | 2015

Ultraviolet and photosynthetically active radiation can both induce photoprotective capacity allowing barley to overcome high radiation stress

Karel Klem; Petr Holub; Michal Štroch; Jakub Nezval; Jan Tříska; Marcel A. K. Jansen; T. Matthew Robson; Otmar Urban

The main objective of this study was to determine the effects of acclimation to ultraviolet (UV) and photosynthetically active radiation (PAR) on photoprotective mechanisms in barley leaves. Barley plants were acclimated for 7 days under three combinations of high or low UV and PAR treatments ([UV-PAR-], [UV-PAR+], [UV+PAR+]). Subsequently, plants were exposed to short-term high radiation stress (HRS; defined by high intensities of PAR - 1000 μmol m(-2) s(-1), UV-A - 10 W m(-2) and UV-B 2 W m(-2) for 4 h), to test their photoprotective capacity. The barley variety sensitive to photooxidative stress (Barke) had low constitutive flavonoid content compared to the resistant variety (Bonus) under low UV and PAR intensities. The accumulation of lutonarin and 3-feruloylquinic acid, but not of saponarin, was greatly enhanced by high PAR and further increased by UV exposure. Acclimation of plants to both high UV and PAR intensities also increased the total pool of xanthophyll-cycle pigments (VAZ). Subsequent exposure to HRS revealed that prior acclimation to UV and PAR was able to ameliorate the negative consequences of HRS on photosynthesis. Both total contents of epidermal flavonols and the total pool of VAZ were closely correlated with small reductions in light-saturated CO2 assimilation rate and maximum quantum yield of photosystem II photochemistry caused by HRS. Based on these results, we conclude that growth under high PAR can substantially increase the photoprotective capacity of barley plants compared with plants grown under low PAR. However, additional UV radiation is necessary to fully induce photoprotective mechanisms in the variety Barke. This study demonstrates that UV-exposure can lead to enhanced photoprotective capacity and can contribute to the induction of tolerance to high radiation stress in barley.


Plant Cell and Environment | 2015

How does solar ultraviolet-B radiation improve drought tolerance of silver birch (Betula pendula Roth.) seedlings?

T. Matthew Robson; Saara M. Hartikainen; Pedro J. Aphalo

We hypothesized that solar ultraviolet (UV) radiation would protect silver birch seedlings from the detrimental effects of water stress through a coordinated suite of trait responses, including morphological acclimation, improved control of water loss through gas exchange and hydraulic sufficiency. To better understand how this synergetic interaction works, plants were grown in an experiment under nine treatment combinations attenuating ultraviolet-A and ultraviolet-B (UVB) from solar radiation together with differential watering to create water-deficit conditions. In seedlings under water deficit, UV attenuation reduced height growth, leaf production and leaf length compared with seedlings receiving the full spectrum of solar radiation, whereas the growth and morphology of well-watered seedlings was largely unaffected by UV attenuation. There was an interactive effect of the treatment combination on water relations, which was more apparent as a change in the water potential at which leaves wilted or plants died than through differences in gas exchange. This suggests that changes occur in the cell wall elastic modulus or accumulation of osmolites in cells under UVB. Overall, the strong negative effects of water deficit are partially ameliorated by solar UV radiation, whereas well-watered silver birch seedlings are slightly disadvantaged by the solar UV radiation they receive.


European Journal of Forest Research | 2016

Tree species richness induces strong intraspecific variability of beech (Fagus sylvatica) leaf traits and alleviates edaphic stress

Estelle Forey; Estelle Langlois; Gauthier Lapa; Nathalie Korboulewsky; T. Matthew Robson; Michaël Aubert

Manipulating stand composition is an important management tool that foresters can use to affect the nature of forests and ecosystem processes. In mixed stands, interspecific interactions among trees can cause changes in tree performances. Nevertheless, these interactions are context dependent (cf. stress-gradient hypothesis, SGH). We thus investigated how intraspecific functional changes in leaf trait (19 traits) of European beech (Fagus sylvatica) were influenced by stand composition. We compared pure beech stands with four mixed stands containing from one to three additional tree species along a gradient of edaphic stress (gradient of soil water-holding capacity and rooting depth). First, we demonstrated that stand composition induced strong intraspecific leaf trait variation in beech for LDMC, LMA, phenolic compounds, leaf pH and magnesium concentration, suggesting higher nutrient acquisition by more diverse stands. Nevertheless, these results were modulated by edaphic stress. Mixed stands only conferred an advantage in relatively stressed sites (luvisol and leptosol). Besides, the addition of oak to beech stands had unexpected negative effects in sites with less severe stress (cambisol) as indicated by the null or positive LogRR of LMA, LDMC and phenolics. This study found that stand composition is an important though often-overlooked driver of intraspecific variability in leaf quality, and potentially reflects changes in beech tree physiology and productivity. Our results also suggest that positive interactions prevail in sites with stressful conditions. Such validation of the SGH is rare in natural or managed mature forests. Lastly, we strongly recommend that forest managers consider stand composition and abiotic factors when implementing forest growth models to improve their yield predictions.


Physiologia Plantarum | 2018

Do UV-A radiation and blue light during growth prime leaves to cope with acute high light in photoreceptor mutants of Arabidopsis thaliana?

Craig Brelsford; Luis O. Morales; Jakub Nezval; Titta Kotilainen; Saara M. Hartikainen; Pedro J. Aphalo; T. Matthew Robson

We studied how plants acclimated to growing conditions that included combinations of blue light (BL) and ultraviolet (UV)-A radiation, and whether their growing environment affected their photosynthetic capacity during and after a brief period of acute high light (as might happen during an under-canopy sunfleck). Arabidopsis thaliana Landsberg erecta wild-type were compared with mutants lacking functional blue light and UV photoreceptors: phototropin 1, cryptochromes (CRY1 and CRY2) and UV RESISTANT LOCUS 8 (uvr8). This was achieved using light-emitting-diode (LED) lamps in a controlled environment to create treatments with or without BL, in a split-plot design with or without UV-A radiation. We compared the accumulation of phenolic compounds under growth conditions and after exposure to 30 min of high light at the end of the experiment (46 days), and likewise measured the operational efficiency of photosystem II (ϕPSII, a proxy for photosynthetic performance) and dark-adapted maximum quantum yield (Fv /Fm to assess PSII damage). Our results indicate that cryptochromes are the main photoreceptors regulating phenolic compound accumulation in response to BL and UV-A radiation, and a lack of functional cryptochromes impairs photosynthetic performance under high light. Our findings also reveal a role for UVR8 in accumulating flavonoids in response to a low UV-A dose. Interestingly, phototropin 1 partially mediated constitutive accumulation of phenolic compounds in the absence of BL. Low-irradiance BL and UV-A did not improve ϕPSII and Fv /Fm upon our acute high-light treatment; however, CRYs played an important role in ameliorating high-light stress.

Collaboration


Dive into the T. Matthew Robson's collaboration.

Top Co-Authors

Avatar

Ismael Aranda

Center for International Forestry Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Sánchez-Gómez

Center for International Forestry Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karel Klem

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Otmar Urban

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Sandra Lavorel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge