Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Mizuuchi is active.

Publication


Featured researches published by T. Mizuuchi.


Nuclear Fusion | 2001

First plasmas in Heliotron J

T. Obiki; T. Mizuuchi; K. Nagasaki; Hiroyuki Okada; F. Sano; K. Hanatani; Y. Liu; T. Hamada; Y. Manabe; Hiroyuki Shidara; W.L. Ang; Y. Ikeda; T. Kobayashi; T. Takamiya; M. Takeda; Y. Ijiri; T. Senju; K. Yaguchi; K. Sakamoto; Kiyoshi Toshi; M. Shibano; K. Kondo; S. Besshou; Y. Nakamura; M. Nakasuga; Masahiro Wakatani; Osamu Yamagishi; K. Aizawa; Y. Kawazome; S. Maeno

Results obtained in the initial experimental phase of Heliotron J are reported. Electron beam mapping of the magnetic surfaces at a reduced DC magnetic field has revealed that the observed surfaces are in basic agreement with the ones calculated on the basis of the measured ambient field around the device. For 53.2 GHz second harmonic ECH hydrogen plasmas, a fairly wide resonance range for breakdown and heating by the TE02 mode has been observed in Heliotron J as compared with that in Heliotron E. With ECH injection powers up to ≈ 400 kW, diamagnetic stored energies up to ≈ 0.7 kJ were obtained without optimized density control.


Nuclear Fusion | 2005

H-mode confinement of Heliotron J

F. Sano; T. Mizuuchi; K. Kondo; K. Nagasaki; Hiroyuki Okada; S. Kobayashi; K. Hanatani; Y. Nakamura; S. Yamamoto; Y. Torii; Yasuhiro Suzuki; Hiroyuki Shidara; M. Kaneko; Hajime Arimoto; T. Azuma; Jun Arakawa; Keisuke Ohashi; M. Kikutake; Nobuhide Shimazaki; T. Hamagami; G. Motojima; H. Yamazaki; Masaki Yamada; H. Kitagawa; T. Tsuji; H. Nakamura; Shinya Watanabe; S. Murakami; N. Nishino; M. Yokoyama

The L–H transition in a helical-axis heliotron, Heliotron J, is investigated. For electron cyclotron heating (ECH), neutral beam injection (NBI) heating and ECH + NBI combination heating plasmas, the confinement quality of the H-mode is examined with an emphasis on its magnetic configuration dependence. The vacuum edge rotational transform, ι(a)/2π, is chosen as a label for the magnetic configuration where ι/2π is the rotational transform and a is the average plasma minor radius in metres. The experimental ι(a)/2π dependence of the enhancement factor over the L-mode confinement reveals that specific configurations exist where high-quality H-modes (1.3 < HISS95 < 1.8) are attained. is the experimental global energy confinement time and is the confinement time scaling from the international stellarator database given as . R is the plasma major radius in metres, is the line-averaged plasma density in 1019 m−3, PL is the power loss in megawatts that accounts for the time derivative of the total plasma energy content and Bt is the toroidal magnetic field strength in tesla (Stroth U. et al 1996 Nucl. Fusion 36 1063). The ι (a)/2π ranges for these configurations are near values that are slightly less than those of the major natural resonances of Heliotron J, i.e. n/m = 4/8, 4/7 and 12/22. To better understand this configuration dependence, the geometrical poloidal viscous damping rate coefficient, Cp, is calculated for different values of ι(a)/2π and compared with the experimental results. The threshold line-averaged density of the H-mode, which depends on the configuration, is in the region of 0.7–2.0 × 1019 m−3 in ECH (0.29 MW) + NBI (0.57 MW) operation. As for the edge plasma characteristics, Langmuir probe measurements have shown a reduced fluctuation-induced transport in the region that begins inside the last closed flux surface (LCFS) and extends into the scrape-off layer. In addition, a negative radial electric field Er (or Er-shear) is simultaneously formed near the LCFS at the transition.


Fusion Technology | 1990

Recent Heliotron E physics study activities and engineering developments

T. Obiki; Masahiro Wakatani; Motoyasu Sato; S. Sudo; F. Sano; Takashi Mutoh; Kimitaka Itoh; K. Kondo; M. Nakasuga; K. Hanatani; H. Zushi; T. Mizuuchi; H. Kaneko; Hiroyuki Okada; Yasuhiko Takeiri; Y. Nakamura; S. Besshou; Y. Ijiri; Masashi Iima; T. Senju; K. Yaguchi; T. Baba; Sakuji Kobayashi; Keiji Matsuo; Katsunori Muraoka; Takashige Tsukishima; Masamitsu Nakajima

Recent studies of transport, magnetohydrodynamic stability, and divertor action on Heliotron E are summarized. A pellet injector and a new diagnostic system are developed. Moreover, the Heliotron groups is conducting research and development on heating and other new systems for the Large Helical Device.


Nuclear Fusion | 2000

Study of a helical axis heliotron

Masahiro Wakatani; Y. Nakamura; K. Kondo; M. Nakasuga; S. Besshou; T. Obiki; F. Sano; K. Hanatani; T. Mizuuchi; Hiroyuki Okada; K. Nagasaki; N. Inoue; M. Yokoyama

Optimization studies have been done for the helical axis heliotron configuration. One purpose is to find a configuration suitable for experimental studies of the basic properties of a helical axis heliotron. In the present study, the role of the bumpy field component (toroidal mirror ratio) in MHD stability and neoclassical confinement for this type of configuration is examined. The physical mechanism of the improvement of the neoclassical transport through control of the bumpy field component is clarified. The physics design and current status of the new helical axis heliotron device, Heliotron J, are also described.


Nuclear Fusion | 2003

Objectives and design of the JT-60 superconducting tokamak

S. Ishida; K. Abe; Akira Ando; T. Cho; T. Fujii; T. Fujita; Seiichi Goto; K. Hanada; A. Hatayama; Tomoaki Hino; Hiroshi Horiike; N. Hosogane; M. Ichimura; Shunji Tsuji-Iio; S.-I. Itoh; Y. Kamada; Makoto Katsurai; M. Kikuchi; A. Kitsunezaki; A Kohyama; H. Kubo; M. Kuriyama; M. Matsukawa; M. Matsuoka; Y. Miura; N. Miya; T. Mizuuchi; Y. Murakami; K. Nagasaki; H. Ninomiya

A fully superconducting tokamak named JT-60SC is designed for the modification programme of JT-60 to enhance economical and environmental attractiveness in tokamak fusion reactors. JT-60SC aims at realizing high-β steady-state operation in the use of low radio-activation ferritic steel in a low ν* and ρ* regime relevant to the reactor plasmas. Objectives, research issues, plasma control schemes and a conceptual design for JT-60SC are presented.


Nuclear Fusion | 1985

Studies of currentless, high-beta plasma in the Heliotron E device

O. Motojima; F. Sano; Masahiko Sato; H. Kaneko; H. Zushi; S. Sudo; S. Besshou; A. Sasaki; K. Kondo; T. Mutoh; T. Mizuuchi; Hiroyuki Okada; M. Iima; T. Baba; K. Hanatani; J. H. Harris; Masahiro Wakatani; T. Obiki; A. Iiyoshi; K. Uo

A currentless plasma with a volume-averaged beta value of 2% has been produced with neutral beam heating. Target plasmas were created by second harmonic resonance heating with electron cyclotron waves (150–350 kW and 53.2 GHz) at a magnetic field strength of 0.94 T. Neutral beam injection (23–30 keV and 1.3−2.6 MW) was used to heat the plasma further. MHD stable and unstable high-beta plasmas were observed. The Q-mode plasmas were produced with the help of intense neutral gas puffing. Properties of the MHD activity and confinement of high-beta plasmas are discussed and compared with theoretical studies.


Journal of Nuclear Materials | 1984

Analysis of the plasma-wall interaction in the Heliotron E device

O. Motojima; T. Mizuuchi; S. Besshou; A. Iiyoshi; K. Uo; Toshiro Yamashina; Mamoru Mohri; Tohru Satake; Masao Hashiba; Susumu Amemiya; H. Miwa

The plasma-wall interaction (PWI) of the currentless plasmas with temperature To, Tio ≤ 1.1 keV, density Ne = (2–10)× 1013/cm3, and volume-averaged beta value of β


Nuclear Fusion | 1984

ICRF heating of currentless plasma in Heliotron E

T. Mutoh; Hiroyuki Okada; O. Motojima; S. Morimoto; Masahiko Sato; H. Zushi; K. Kondo; S. Sudo; S. Besshou; T. Mizuuchi; H. Kaneko; F. Sano; M. Iima; T. Obiki; A. Iiyoshi; K. Uo

≤ 2% was investigated. We have observed that PWI took place mainly where the divertor field line intersected the chamber wall (called divertor traces). Boundary plasmas were measured with electrostatic probes, which showed the presence of the divertor region with the parameters in the range of Ned = 1010–1011/cm3 and Ted = 10–50 eV. Surface analysis techniques (ESCA, AES, and RBS) were applied to analyze the surface probes (Si, graphite and stainless steel) and the test pieces (SiC, TiC, and stainless steel), which were irradiated by plasmas for short and long times respectively.


Nuclear Fusion | 2002

Plasma flow asymmetries in the natural helical divertor of an l = 3 torsatron and their relation to particle losses

V.V. Chechkin; L.I. Grigor'eva; M.S. Smirnova; E.L. Sorokovoj; E.D. Volkov; V.A. Rudakov; K.S. Rubtsov; N.I. Nazarov; A.V. Lozin; S. A. Tsybenko; A.P. Litvinov; A S Slavnyj; I.Yu. Adamov; A. Ye. Kulaga; Yu.K. Mironov; V D Kotsubanov; I.K. Nikol'skij; T. Mizuuchi; S. Masuzaki; T. Morisaki; N. Ohyabu; K. Yamazaki

In the Heliotron E device, a non-axisymmetric helical system, ICRF heating experiments were carried out for the first time, using fast-mode and slow-mode waves. In the fast-wave heating experiment, ICRF power of up to 550 kW was emitted during 15 ms by four antenna loops. Effective heating of a current-less ECRH-produced target plasma was observed over a wide density range. The plasma loading resistance of an antenna loop reached about 5 ?. This is a value comparable with that of tokamak experiments. The increments of ion and electron temperatures by fast-wave heating were about 200?230 eV at an electron density of about 3 ? 1019m?3. Minority heating and pure second-harmonic heating have almost the same efficiency ((1?2) ? 1019eV?m?3?kW?1) during the short RF pulse used (t ? 15 ms). The energy transfer rate from the waves to ions and electrons could be explained by mode conversion. The signals of toroidal eigen-modes were experimentally observed and radial mode numbers could be determined using a simple model. In the slow-wave heating experiment, the upper density limit of effective heating appeared to be in qualitative agreement with wave theory.


Nuclear Fusion | 1988

Heating and confinement studies of electron cyclotron resonance heated plasmas in Heliotron E

H. Zushi; Masahiko Sato; O. Motojima; S. Sudo; T. Mutoh; K. Kondo; H. Kaneko; T. Mizuuchi; Hiroyuki Okada; Y. Takeiri; F. Sano; A. Iiyoshi; K. Uo

In the l = 3/m = 9 Uragan-3M (U-3M) torsatron (R0 = 1m , ¯ a ≈ 0.12 m, Bφ = 0.72 T, ι(¯ a)/2π ≈ 0.4), an open helical divertor is realized. A hydrogen plasma with ¯ ne ≈ 2 × 10 18 m −3 , Te ≈ 0.3 keV, Ti ≈ 0.1 keV is produced and heated by RF fields (ω ≈ ωci). The flows of diverted plasma are detected by 78 plane Langmuir probes aligned poloidally in the spacings between the helical coils in two geometrically symmetric poloidal cross-sections of the torus. In measurements of the distributions of ambipolar (e.g. the ion saturation current Is) and non-ambipolar (e.g. the current to a grounded probe Ip) plasma flows, a strong vertical asymmetry of these distributions is observed, its main characteristics being a many-fold difference in the values of Is in the outgoing flows in the upper and lower parts of the torus and the opposite signs of Ip in these flows, with the positive current corresponding to the larger ambipolar flow of the diverted plasma. Reversal of the direction of the toroidal magnetic field results in the reversal of the asymmetry, with the larger flux (and Ip > 0) always flowing in the ion B × ∇B drift direction. On this basis, it is concluded that the asymmetry is related to direct (non-diffusive) losses of charged particles from the confinement volume. This conclusion is validated by numerical modelling of thermal and fast particle orbits in U-3M, where qualitative agreement has been revealed between the calculated distribution of the angular co-ordinates of lost particles and the measured poloidal distributions of the flows of diverted plasma.

Collaboration


Dive into the T. Mizuuchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge