T. Moulin
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. Moulin.
Astronomy and Astrophysics | 2011
J.-B. Le Bouquin; J. Berger; B. Lazareff; G. Zins; P. Haguenauer; L. Jocou; P. Kern; R. Millan-Gabet; Wesley A. Traub; Olivier Absil; J.-C. Augereau; M. Benisty; N. Blind; Xavier Bonfils; Pierre Bourget; A. Delboulbé; Philippe Feautrier; M. Germain; Philippe B. Gitton; D. Gillier; M. Kiekebusch; J. Kluska; Jens Knudstrup; Pierre Labeye; J.-L. Lizon; Jean-Louis Monin; Y. Magnard; F. Malbet; D. Maurel; Francois Menard
PIONIER stands for Precision Integrated-Optics Near-infrared Imaging ExpeRiment. It combines four 1.8m Auxilliary Telescopes or four 8m Unit Telescopes of the Very Large Telescope Interferometer (ESO, Chile) using an integrated optics combiner. The instrument has been integrated at IPAG starting in December 2009 and commissioned at the Paranal Observatory in October 2010. It provides scientific observations since November 2010. In this paper, we detail the instrumental concept, we describe the standard operational modes and the data reduction strategy. We present the typical performance and discuss how to improve them. This paper is based on laboratory data obtained during the integrations at IPAG, as well as on-sky data gathered during the commissioning at VLTI. We illustrate the imaging capability of PIONIER on the binaries deltaSco and HIP11231. PIONIER provides 6 visibilities and 3 independent closure phases in the H band, either in a broadband mode or with a low spectral dispersion (R=40), using natural light (i.e. unpolarized). The limiting magnitude is Hmag=7 in dispersed mode under median atmospheric conditions (seeing 3ms) with the 1.8m Auxiliary Telescopes. We demonstrate a precision of 0.5deg on the closure phases. The precision on the calibrated visibilities ranges from 3 to 15% depending on the atmospheric conditions. PIONIER has been installed and successfully tested as a visitor instrument for the VLTI. It permits high angular resolution imaging studies at an unprecedented level of sensitivity. The successful combination of the four 8m Unit Telescopes in March 2011 demonstrates that VLTI is ready for 4-telescope operation.
Astronomy and Astrophysics | 2016
A. Vigan; M. Bonnefoy; C. Ginski; H. Beust; R. Galicher; Markus Janson; J.-L. Baudino; Esther Buenzli; J. Hagelberg; Valentina D'Orazi; S. Desidera; A.-L. Maire; R. Gratton; Jean-François Sauvage; G. Chauvin; C. Thalmann; L. Malo; G. Salter; A. Zurlo; J. Antichi; Andrea Baruffolo; Pierre Baudoz; P. Blanchard; A. Boccaletti; J.-L. Beuzit; M. Carle; R. U. Claudi; A. Costille; A. Delboulbé; Kjetil Dohlen
GJ 758 B is a brown dwarf companion to a nearby (15.76%) solar-type, metal-rich (M/H = +0.2 dex) main-sequence star (G9V) that was discovered with Subaru/HiCIAO in 2009. From previous studies, it has drawn attention as being the coldest (similar to 600 K) companion ever directly imaged around a neighboring star. We present new high-contrast data obtained during the commissioning of the SPHERE instrument at the Very Large Telescope (VLT). The data was obtained in Y-, J-, H-, and K-s-bands with the dual-band imaging (DBI) mode of IRDIS, thus providing a broad coverage of the full near-infrared (near-IR) range at higher contrast and better spectral sampling than previously reported. In this new set of high-quality data, we report the re-detection of the companion, as well as the first detection of a new candidate closer-in to the star. We use the new eight photometric points for an extended comparison of GJ 758 B with empirical objects and four families of atmospheric models. From comparison to empirical object, we estimate a T8 spectral type, but none of the comparison objects can accurately represent the observed near-IR fluxes of GJ 758 B. From comparison to atmospheric models, we attribute a T-eff = 600 +/- 100 K, but we find that no atmospheric model can adequately fit all the fluxes of GJ 758 B. The lack of exploration of metal enrichment in model grids appears as a major limitation that prevents an accurate estimation of the companion physical parameters. The photometry of the new candidate companion is broadly consistent with L-type objects, but a second epoch with improved photometry is necessary to clarify its status. The new astrometry of GJ 758 B shows a significant proper motion since the last epoch. We use this result to improve the determination of the orbital characteristics using two fitting approaches: Least-Squares Monte Carlo and Markov chain Monte Carlo. We confirm the high-eccentricity of the orbit (peak at 0.5), and find a most likely semi-major axis of 46.05 AU. We also use our imaging data, as well as archival radial velocity data, to reject the possibility that this is a false positive effect created by an unseen, closer-in, companion. Finally, we analyze the sensitivity of our data to additional closer-in companions and reject the possibility of other massive brown dwarf companions down to 4-5 AU.
Proceedings of SPIE | 2014
Thierry Fusco; J.-F. Sauvage; Cyril Petit; A. Costille; Kjetil Dohlen; David Mouillet; Jean-Luc Beuzit; M. Kasper; M. Suarez; Christian Soenke; Enrico Fedrigo; Mark Downing; Pierre Baudoz; A. Sevin; Denis Perret; A. Barrufolo; Bernardo Salasnich; Pascal Puget; F. Feautrier; S. Rochat; T. Moulin; A. Deboulbé; Emmanuel Hugot; A. Vigan; Dimitri Mawet; J. H. Girard; Norbert Hubin
The extreme AO system, SAXO (SPHERE AO for eXoplanet Observation), is the heart of the SPHERE system, feeding the scientific instruments with flat wave front corrected from all the atmospheric turbulence and internal defects. We will present the final performance of SAXO obtained during the instrument AIT in Europe as well as the very first on-sky results. The main requirements and system characteristics will be recalled and the full AO loop performance will be quantified and compared to original specifications. It will be demonstrated that SAXO meets or even exceeds (especially its limit magnitude and its jitter residuals) its challenging requirements (more than 90% of SR in H band and a 3 mas residual jitter). Finally, after 10 years of AO developments, from early design to final on-sky implementations, some critical system aspects as well as some important lesson-learned will be presented in the perspective of the future generation of complex AO systems for VLTs and ELTs.
Proceedings of SPIE | 2012
Philippe Feautrier; Jean-Luc Gach; Mark Downing; Paul Jorden; Johann Kolb; Johan Rothman; Thierry Fusco; Philippe Balard; Eric Stadler; Christian Guillaume; David Boutolleau; G. Destefanis; Nicolas Lhermet; Olivier Pacaud; Michel Vuillermet; A. Kerlain; Norbert Hubin; Javier Reyes; Markus Kasper; Olaf Ivert; Wolfgang Suske; Andrew Walker; Michael Skegg; Sophie Derelle; Joël Deschamps; Clélia Robert; Nicolas Védrenne; Frédéric Chazalet; Julien Tanchon; Thierry Trollier
The purpose of this paper is to give an overview of the state of the art wavefront sensor detectors developments held in Europe for the last decade. The success of the next generation of instruments for 8 to 40-m class telescopes will depend on the ability of Adaptive Optics (AO) systems to provide excellent image quality and stability. This will be achieved by increasing the sampling, wavelength range and correction quality of the wave front error in both spatial and time domains. The modern generation of AO wavefront sensor detectors development started in the late nineties with the CCD50 detector fabricated by e2v technologies under ESO contract for the ESO NACO AO system. With a 128x128 pixels format, this 8 outputs CCD offered a 500 Hz frame rate with a readout noise of 7e-. A major breakthrough has been achieved with the recent development by e2v technologies of the CCD220. This 240x240 pixels 8 outputs EMCCD (CCD with internal multiplication) has been jointly funded by ESO and Europe under the FP6 programme. The CCD220 and the OCAM2 camera that operates the detector are now the most sensitive system in the world for advanced adaptive optics systems, offering less than 0.2 e readout noise at a frame rate of 1500 Hz with negligible dark current. Extremely easy to operate, OCAM2 only needs a 24 V power supply and a modest water cooling circuit. This system, commercialized by First Light Imaging, is extensively described in this paper. An upgrade of OCAM2 is foreseen to boost its frame rate to 2 kHz, opening the window of XAO wavefront sensing for the ELT using 4 synchronized cameras and pyramid wavefront sensing. Since this major success, new developments started in Europe. One is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with ESO involvement. The spot elongation from a LGS Shack Hartman wavefront sensor necessitates an increase of the pixel format. Two detectors are currently developed by e2v. The NGSD will be a 880x840 pixels CMOS detector with a readout noise of 3 e (goal 1e) at 700 Hz frame rate. The LGSD is a scaling of the NGSD with 1760x1680 pixels and 3 e readout noise (goal 1e) at 700 Hz (goal 1000 Hz) frame rate. New technologies will be developed for that purpose: advanced CMOS pixel architecture, CMOS back thinned and back illuminated device for very high QE, full digital outputs with signal digital conversion on chip. In addition, the CMOS technology is extremely robust in a telescope environment. Both detectors will be used on the European ELT but also interest potentially all giant telescopes under development. Additional developments also started for wavefront sensing in the infrared based on a new technological breakthrough using ultra low noise Avalanche Photodiode (APD) arrays within the RAPID project. Developed by the SOFRADIR and CEA/LETI manufacturers, the latter will offer a 320x240 8 outputs 30 microns IR array, sensitive from 0.4 to 3.2 microns, with 2 e readout noise at 1500 Hz frame rate. The high QE response is almost flat over this wavelength range. Advanced packaging with miniature cryostat using liquid nitrogen free pulse tube cryocoolers is currently developed for this programme in order to allow use on this detector in any type of environment. First results of this project are detailed here. These programs are held with several partners, among them are the French astronomical laboratories (LAM, OHP, IPAG), the detector manufacturers (e2v technologies, Sofradir, CEA/LETI) and other partners (ESO, ONERA, IAC, GTC). Funding is: Opticon FP6 and FP7 from European Commission, ESO, CNRS and Université de Provence, Sofradir, ONERA, CEA/LETI and the French FUI (DGCIS).
Proceedings of SPIE | 2010
Jean-Philippe Berger; G. Zins; B. Lazareff; J. B. Lebouquin; L. Jocou; P. Kern; R. Millan-Gabet; Wesley A. Traub; P. Haguenauer; Olivier Absil; J.-C. Augereau; M. Benisty; N. Blind; Xavier Bonfils; A. Delboulbé; Philippe Feautrier; M. Germain; D. Gillier; Philippe B. Gitton; M. Kiekebusch; Jens Knudstrup; J.-L. Lizon; Y. Magnard; Fabien Malbet; D. Maurel; Francois Menard; M. Micallef; L. Michaud; S. Morel; T. Moulin
PIONIER is a 4-telescope visitor instrument for the VLTI, planned to see its first fringes in 2010. It combines four ATs or four UTs using a pairwise ABCD integrated optics combiner that can also be used in scanning mode. It provides low spectral resolution in H and K band. PIONIER is designed for imaging with a specific emphasis on fast fringe recording to allow closure-phases and visibilities to be precisely measured. In this work we provide the detailed description of the instrument and present its updated status.
Monthly Notices of the Royal Astronomical Society | 2018
R. Ligi; A. Vigan; R. Gratton; J. de Boer; M. Benisty; A. Boccaletti; Sascha P. Quanz; Michael R. Meyer; C. Ginski; E. Sissa; C. Gry; T. Henning; J.-L. Beuzit; Beth A. Biller; M. Bonnefoy; G. Chauvin; Anthony Cheetham; M. Cudel; P. Delorme; S. Desidera; Markus Feldt; R. Galicher; J. H. Girard; Markus Janson; M. Kasper; T. Kopytova; A.-M. Lagrange; M. Langlois; H. LeCoroller; A. L. Maire
We present observations of the Herbig Ae star HD169142 with VLT/SPHERE instruments InfraRed Dual-band Imager and Spectrograph (IRDIS) (K1K2 and H2H3 bands) and the Integral Field Spectrograph (IFS) (Y , J and H bands). We detect several bright blobs at ∼180 mas separation from the star, and a faint arc-like structure in the IFS data. Our reference differential imaging (RDI) data analysis also finds a bright ring at the same separation. We show, using a simulation based on polarized light data, that these blobs are actually part of the ring at 180 mas. These results demonstrate that the earlier detections of blobs in the H and K S bands at these separations in Biller et al. as potential planet/substellar companions are actually tracing a bright ring with a Keplerian motion. Moreover, we detect in the images an additional bright structure at ∼93 mas separation and position angle of 355 • , at a location very close to previous detections. It appears point-like in the Y J and K bands but is more extended in the H band. We also marginally detect an inner ring in the RDI data at ∼100 mas. Follow-up observations are necessary to confirm the detection and the nature of this source and structure.
Proceedings of SPIE | 2014
Philippe Feautrier; Jean-Luc Gach; Sylvain Guieu; Mark Downing; Paul Jorden; Johan Rothman; Eric De Borniol; Philippe Balard; Eric Stadler; Christian Guillaume; David Boutolleau; J. Coussement; Johann Kolb; Norbert Hubin; Sophie Derelle; Clélia Robert; Julien Tanchon; Thierry Trollier; Alain Ravex; G. Zins; P. Kern; T. Moulin; S. Rochat; Alain Delpoulbé; Jean-Baptiste Lebouqun
We report in this paper decisive advance on the detector development for the astronomical applications that require very fast operation. Since the CCD220 and OCAM2 major success, new detector developments started in Europe either for visible and IR wavelengths. Funded by ESO and the FP7 Opticon European network, the NGSD CMOS device is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with strong ESO involvement. The NGSD will be a 880x840 pixels CMOS detector with a readout noise of 3 e (goal 1e) at 700 Hz frame rate and providing digital outputs. A camera development, based on this CMOS device and also funded by the Opticon European network, is ongoing. Another major AO wavefront sensing detector development concerns IR detectors based on Avalanche Photodiode (e- APD) arrays within the RAPID project. Developed by the SOFRADIR and CEA/LETI manufacturers, the latter offers a 320x255 8 outputs 30 microns IR array, sensitive from 0.4 to 3 microns, with less than 2 e readout noise at 1600 fps. A rectangular window can also be programmed to speed up even more the frame rate when the full frame readout is not required. The high QE response, in the range of 70%, is almost flat over this wavelength range. Advanced packaging with miniature cryostat using pulse tube cryocoolers was developed in the frame of this programme in order to allow use on this detector in any type of environment. The characterization results of this device are presented here. Readout noise as low as 1.7 e at 1600 fps has been measured with a 3 microns wavelength cut-off chip and a multiplication gain of 14 obtained with a limited photodiode polarization of 8V. This device also exhibits excellent linearity, lower than 1%. The pulse tube cooling allows smart and easy cooling down to 55 K. Vibrations investigations using centroiding and FFT measurements were performed proving that the miniature pulse tube does not induce measurable vibrations to the optical bench, allowing use of this cooled device without liquid nitrogen in very demanding environmental conditions. A successful test of this device was performed on sky on the PIONIER 4 telescopes beam combiner on the VLTi at ESOParanal in June 2014. First Light Imaging, which will commercialize a camera system using also APD infrared arrays in its proprietary wavefront sensor camera platform. These programs are held with several partners, among them are the French astronomical laboratories (LAM, OHP, IPAG), the detector manufacturers (e2v technologies, Sofradir, CEA/LETI) and other partners (ESO, ONERA, IAC, GTC, First Light Imaging). Funding is: Opticon FP7 from European Commission, ESO, CNRS and Université de Provence, Sofradir, ONERA, CEA/LETI the French FUI (DGCIS), the FOCUS Labex and OSEO.
Astronomy and Astrophysics | 2018
J. Olofsson; R. G. van Holstein; A. Boccaletti; Markus Janson; P. Thébault; R. Gratton; C. Lazzoni; Q. Kral; A. Bayo; H. Canovas; C. Caceres; C. Ginski; C. Pinte; R. Asensio-Torres; G. Chauvin; S. Desidera; Th. Henning; M. Langlois; J. Milli; Joshua E. Schlieder; M. R. Schreiber; J.-C. Augereau; M. Bonnefoy; Esther Buenzli; Wolfgang Brandner; S. Durkan; N. Engler; M. Feldt; N. Godoy; C. A. Grady
Context. Debris disks are the intrinsic by-products of the star and planet formation processes. Most likely due to instrumental limitations and their natural faintness, little is known about debris disks around low mass stars, especially when it comes to spatially resolved observations. Aims. We present new VLT/SPHERE IRDIS Dual-Polarization Imaging (DPI) observations in which we detect the dust ring around the M2 spectral type star TWA 7. Combined with additional Angular Differential Imaging observations we aim at a fine characterization of the debris disk and setting constraints on the presence of low-mass planets. Methods. We model the SPHERE DPI observations and constrain the location of the small dust grains, as well as the spectral energy distribution of the debris disk, using the results inferred from the observations, and perform simple N-body simulations. Results. We find that the dust density distribution peaks at ∼ 0.72′′ (25 au), with a very shallow outer power-law slope, and that the disk has an inclination of ∼ 13◦ with a position angle of ∼ 91◦ East of North. We also report low signal-to-noise detections of an outer belt at a distance of ∼ 1.5′′ (∼ 52 au) from the star, of a spiral arm in the Southern side of the star, and of a possible dusty clump at 0.11′′. These findings seem to persist over timescales of at least a year. Using the intensity images, we do not detect any planets in the close vicinity of the star, but the sensitivity reaches Jovian planet mass upper limits. We find that the SED is best reproduced with an inner disk at ∼ 0.2′′ (∼ 7 au) and another belt at 0.72′′ (25 au). Conclusions. We report the detections of several unexpected features in the disk around TWA 7. A yet undetected 100 M⊕ planet with a semi-major axis at 20 − 30 au could possibly explain the outer belt as well as the spiral arm. We conclude that stellar winds are unlikely to be responsible for the spiral arm.
Astronomy and Astrophysics | 2018
A. Müller; M. Keppler; Th. Henning; M. Samland; G. Chauvin; H. Beust; A.-L. Maire; K. Molaverdikhani; R. van Boekel; M. Benisty; A. Boccaletti; M. Bonnefoy; F. Cantalloube; B. Charnay; J.-L. Baudino; Mario Gennaro; Z. C. Long; A. Cheetham; S. Desidera; M. Feldt; T. Fusco; J. H. Girard; R. Gratton; J. Hagelberg; Markus Janson; A.-M. Lagrange; M. Langlois; C. Lazzoni; R. Ligi; Francois Menard
Aims: We aim to characterize the orbital and atmospheric properties of PDS 70 b, which was first identified on May 2015 in the course of the SHINE survey with SPHERE, the extreme adaptive-optics instrument at the VLT. Methods: We obtained new deep SPHERE/IRDIS imaging and SPHERE/IFS spectroscopic observations of PDS 70 b. The astrometric baseline now covers 6 years which allows us to perform an orbital analysis. For the first time, we present spectrophotometry of the young planet which covers almost the entire near-infrared range (0.96 to 3.8 micrometer). We use different atmospheric models covering a large parameter space in temperature, log(g), chemical composition, and cloud properties to characterize the properties of the atmosphere of PDS 70 b. Results: PDS 70 b is most likely orbiting the star on a circular and disk coplanar orbit at ~22 au inside the gap of the disk. We find a range of models that can describe the spectrophotometric data reasonably well in the temperature range between 1000-1600 K and log(g) no larger than 3.5 dex. The planet radius covers a relatively large range between 1.4 and 3.7 R_jupiter with the larger radii being higher than expected from planet evolution models for the age of the planet of 5.4 Myr. Conclusions: This study provides a comprehensive dataset on the orbital motion of PDS 70 b, indicating a circular orbit and a motion coplanar with the disk. The first detailed spectral energy distribution of PDS 70 b indicates a temperature typical for young giant planets. The detailed atmospheric analysis indicates that a circumplanetary disk may contribute to the total planet flux.
Proceedings of SPIE | 2016
F. Gonte; Jaime Alonso; Emmanuel Aller-Carpentier; Luigi Andolfato; Jean-Philippe Berger; Angela Cortes; F. Delplancke-Ströbele; R. Donaldson; Reinhold J. Dorn; Christophe Dupuy; Sebastian Egner; Stefan Huber; Norbert Hubin; Jean-Paul Kirchbauer; Miska Le Louarn; Paul Lilley; Paul Jolley; Alessandro Martis; Jerome Paufique; Luca Pasquini; J. Quentin; Robert Ridings; Javier Reyes; Pavel Shchkaturov; M. Suarez; Thanh Phan Duc; Guillermo Valdes; Julien Woillez; Jean-Baptiste Le Bouquin; Jean-Luc Beuzit
The New Adaptive Optics Module for Interferometry (NAOMI) will be developed for and installed at the 1.8-metre Auxiliary Telescopes (ATs) at ESO Paranal. The goal of the project is to equip all four ATs with a low-order Shack– Hartmann adaptive optics system operating in the visible. By improving the wavefront quality delivered by the ATs for guide stars brighter than R = 13 mag, NAOMI will make the existing interferometer performance less dependent on the seeing conditions. Fed with higher and more stable Strehl, the fringe tracker(s) will achieve the fringe stability necessary to reach the full performance of the second-generation instruments GRAVITY and MATISSE.