T.N. Swaminathan
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T.N. Swaminathan.
Journal of Fluid Mechanics | 2006
T.N. Swaminathan; Karthik Mukundakrishnan; Howard H. Hu
The motion of a heavy rigid ellipsoidal particle settling in an infinitely long circular tube filled with an incompressible Newtonian fluid has been studied numerically for three categories of problems, namely, when both fluid and particle inertia are negligible, when fluid inertia is negligible but particle inertia is present, and when both fluid and particle inertia are present. The governing equations for both the fluid and the solid particle have been solved using an arbitrary Lagrangian-Eulerian based finite-element method. Under Stokes flow conditions, an ellipsoid without inertia is observed to follow a perfectly periodic orbit in which the particle rotates and moves from side to side in the tube as it settles. The amplitude and the period of this oscillatory motion depend on the initial orientation and the aspect ratio of the ellipsoid. An ellipsoid with inertia is found to follow initially a similar oscillatory motion with increasing amplitude. Its orientation tends towards a flatter configuration, and the rate of change of its orientation is found to be a function of the particle Stokes number which characterizes the particle inertia. The ellipsoid eventually collides with the tube wall, and settles into a different periodic orbit. For cases with non-zero Reynolds numbers, an ellipsoid is seen to attain a steady-state configuration wherein it falls vertically. The location and configuration of this steady equilibrium varies with the Reynolds number.
Journal of Biomechanical Engineering-transactions of The Asme | 2005
T.N. Swaminathan; Howard Hu; Aalpen Patel
BACKGROUND Vena Cava filters are used to prevent pulmonary embolism in patients with deep vein thrombosis who are unresponsive to anticoagulation therapy. Various filter designs exist in the market with different characteristics distinguishing them. An understanding of the characteristics of these filters is desirable in order to develop better designs. METHODS A computational fluid dynamical study of the flow over an unoccluded stainless steel Greenfield Vena Cava filter (Boston Scientific, Watertown, MA) to determine its properties has been performed. Simulation of flow over a filter placed axisymmetrically in a rounded inferior vena cava has been performed at a Reynolds numbers of 1000 and the consequences of the flow (by studying parameters like shear stress and stagnation zones) have been discussed. Furthermore, a new finite element based numerical method has been developed that allows the study of capturing properties of Inferior Vena Cava filters. The key idea is the introduction of a thin-wire-model (TWM) that enables a drastic reduction in the computational cost while still maintaining control on the physics of the problem. This numerical technique has been applied to evaluate the embolus capture characteristic of a Greenfield filter. RESULTS The flow around the unoccluded filter is found to be steady and laminar at the conditions studied. A recirculation/stagnation zone develops immediately downstream of the filter head. This zone is significantly larger when the central hole is occluded. The shear stress and stagnation zone properties for such a flow over a Greenfield filter are compared with existing literature (in vitro studies). A graph showing the regions wherein clots escape or get captured has been determined by a means of numerical simulations. The data has further been analyzed to determine the probability of clot capture as function of the clot size. CONCLUSIONS The stagnation zone formed behind the head of the Greenfield filter is found to be smaller in size when compared to that of the same filter with the central hole occluded. A map of the shear stress distribution shows a small region having the potential for thrombogenesis. The non-Newtonian properties of blood are not seen to cause much variation in the flow field when compared to the Newtonian model. However variation in the cava size leads to a significant change in the shear stresses. This study also establishes a novel method wherein computational means are used to determine the efficacy of clot capturing of filters. These techniques can further be used to compare the different characteristics among filters.
Physics of Fluids | 2011
B. Uma; T.N. Swaminathan; Ravi Radhakrishnan; David M. Eckmann; Portonovo S. Ayyaswamy
We consider the Brownian motion of a nanoparticle in an incompressible Newtonian fluid medium (quiescent or fully developed Poiseuille flow) with the fluctuating hydrodynamics approach. The formalism considers situations where both the Brownian motion and the hydrodynamic interactions are important. The flow results have been modified to account for compressibility effects. Different nanoparticle sizes and nearly neutrally buoyant particle densities are also considered. Tracked particles are initially located at various distances from the bounding wall to delineate wall effects. The results for thermal equilibrium are validated by comparing the predictions for the temperatures of the particle with those obtained from the equipartition theorem. The nature of the hydrodynamic interactions is verified by comparing the velocity autocorrelation functions and mean square displacements with analytical and experimental results where available. The equipartition theorem for a Brownian particle in Poiseuille flow is verified for a range of low Reynolds numbers. Numerical predictions of wall interactions with the particle in terms of particle diffusivities are consistent with results, where available.
Iubmb Life | 2011
T.N. Swaminathan; Jin Liu; Uma Balakrishnan; Portonovo S. Ayyaswamy; Ravi Radhakrishnan; David M. Eckmann
This article reviews experimental and modeling methods for determining the critical roles played by the various factors that control nanocarrier drug delivery to vascular endothelial cells.
Journal of Fluid Mechanics | 2010
T.N. Swaminathan; Karthik Mukundakrishnan; Portonovo S. Ayyaswamy; David M. Eckmann
We present detailed results for the motion of a finite sized gas bubble in a blood vessel. The bubble (dispersed phase) size is taken to be such as to nearly occlude the vessel. The bulk medium is treated as a shear thinning Casson fluid and contains a soluble surfactant that adsorbs and desorbs from the interface. Three different vessel sizes, corresponding to a small artery, a large arteriole, and a small arteriole, in normal humans, are considered. The hematocrit (volume fraction of RBCs) has been taken to be 0.45. For arteriolar flow, where relevant, the Fahraeus-Lindqvist effect is taken into account. Bubble motion cause temporal and spatial gradients of shear stress at the cell surface lining the vessel wall as the bubble approaches the cell, moves over it and passes it by. Rapid reversals occur in the sign of the shear stress imparted to the cell surface during this motion. Shear stress gradients together with sign reversals are associated with a recirculation vortex at the rear of the moving bubble. The presence of the surfactant reduces the level of the shear stress gradients imparted to the cell surface as compared to an equivalent surfactant-free system. Our numerical results for bubble shapes and wall shear stresses may help explain phenomena observed in experimental studies related to gas embolism, a significant problem in cardiac surgery and decompression sickness.
Journal of Chemical Physics | 2011
B. Uma; T.N. Swaminathan; Portonovo S. Ayyaswamy; David M. Eckmann; Ravi Radhakrishnan
A direct numerical simulation (DNS) procedure is employed to study the thermal motion of a nanoparticle in an incompressible Newtonian stationary fluid medium with the generalized Langevin approach. We consider both the Markovian (white noise) and non-Markovian (Ornstein-Uhlenbeck noise and Mittag-Leffler noise) processes. Initial locations of the particle are at various distances from the bounding wall to delineate wall effects. At thermal equilibrium, the numerical results are validated by comparing the calculated translational and rotational temperatures of the particle with those obtained from the equipartition theorem. The nature of the hydrodynamic interactions is verified by comparing the velocity autocorrelation functions and mean square displacements with analytical results. Numerical predictions of wall interactions with the particle in terms of mean square displacements are compared with analytical results. In the non-Markovian Langevin approach, an appropriate choice of colored noise is required to satisfy the power-law decay in the velocity autocorrelation function at long times. The results obtained by using non-Markovian Mittag-Leffler noise simultaneously satisfy the equipartition theorem and the long-time behavior of the hydrodynamic correlations for a range of memory correlation times. The Ornstein-Uhlenbeck process does not provide the appropriate hydrodynamic correlations. Comparing our DNS results to the solution of an one-dimensional generalized Langevin equation, it is observed that where the thermostat adheres to the equipartition theorem, the characteristic memory time in the noise is consistent with the inherent time scale of the memory kernel. The performance of the thermostat with respect to equilibrium and dynamic properties for various noise schemes is discussed.
Journal of Colloid and Interface Science | 2010
T.N. Swaminathan; Tong Gao; Howard H. Hu
The motion and deformation of a long elastic particle undergoing electrophoresis has been studied numerically and analytically. The particle is elliptical in shape and is initially aligned with its major axis perpendicular to the direction of a uniformly applied electric field. The particle tends to curl up at its ends and arches in the middle as it moves. The deformation of the particle is due to the viscous stress acting on the particle surface. The results from the simulation are explained by evaluating the surface force distribution on a long thin object under similar conditions. The pressure due to the inertia of the flow has a negligible effect on this deformation.
Annals of Biomedical Engineering | 2010
T.N. Swaminathan; Portonovo S. Ayyaswamy; David M. Eckmann
Gas bubble motion in a blood vessel causes temporal and spatial gradients of shear stress at the cell surface lining the vessel wall as the bubble approaches the cell, moves over it and passes it by. Rapid reversals occur in the sign of the shear stress imparted to the cell surface during this motion. These may result in injury to the cell. The presence of a soluble surfactant in the bulk medium reduces the level of the shear stress gradients imparted to the cell surface as compared to an equivalent surfactant-free system and is an important therapeutic aid. This is particularly true for a very small vessel. In this study, we analyze various physical and chemical properties of any given soluble surfactant to ascertain the relative significance of the property of the surfactant on the reduction in the level of the shear stress gradients imparted to the cell surface in such a vessel. While adsorption, desorption, and maximum possible monolayer interface surfactant concentration significantly impact the shear stress levels, physical properties such as the bulk or surface diffusivity do not appear to have large effects. At a given diameter, surfactants with
Mechanics Research Communications | 2009
T.N. Swaminathan; Howard H. Hu
Journal of Colloid and Interface Science | 2004
T.N. Swaminathan; Howard H. Hu
k_{\rm a}/(k_{\rm d} d) >{{\mathcal{O}}}(10^{-5})