Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Namikawa is active.

Publication


Featured researches published by T. Namikawa.


Proceedings of SPIE | 2016

BICEP3 performance overview and planned Keck Array upgrade

J. A. Grayson; Peter A. R. Ade; Z. Ahmed; K. D. Alexander; M. Amiri; D. Barkats; S. J. Benton; C. A. Bischoff; J. J. Bock; H. Boenish; R. Bowens-Rubin; I. Buder; E. Bullock; V. Buza; J. Connors; J. Filippini; S. Fliescher; M. Halpern; S. Harrison; G. C. Hilton; V. V. Hristov; H. Hui; K. D. Irwin; Ju-Hyung Kang; K. S. Karkare; E. Karpel; S. Kefeli; S. A. Kernasovskiy; J. M. Kovac; C. L. Kuo

Bicep3 is a 520mm aperture, compact two-lens refractor designed to observe the polarization of the cosmic microwave background (CMB) at 95 GHz. Its focal plane consists of modularized tiles of antenna-coupled transition edge sensors (TESs), similar to those used in Bicep2 and the Keck Array. The increased per-receiver optical throughput compared to Bicep2/Keck Array, due to both its faster f=1:7 optics and the larger aperture, more than doubles the combined mapping speed of the Bicep/Keck program. The Bicep3 receiver was recently upgraded to a full complement of 20 tiles of detectors (2560 TESs) and is now beginning its second year of observation (and first science season) at the South Pole. We report on its current performance and observing plans. Given its high per-receiver throughput while maintaining the advantages of a compact design, Bicep3- class receivers are ideally suited as building blocks for a 3rd-generation CMB experiment, consisting of multiple receivers spanning 35 GHz to 270 GHz with total detector count in the tens of thousands. We present plans for such an array, the new BICEP Array that will replace the Keck Array at the South Pole, including design optimization, frequency coverage, and deployment/observing strategies.


Physical Review D | 2017

BICEP2 / Keck Array IX: New bounds on anisotropies of CMB polarization rotation and implications for axionlike particles and primordial magnetic fields

Peter A. R. Ade; Z. Ahmed; R. W. Aikin; K. D. Alexander; D. Barkats; S. J. Benton; C. Bischoff; J. J. Bock; R. Bowens-Rubin; J. A. Brevik; I. Buder; E. Bullock; V. Buza; J. Connors; B. P. Crill; L. Duband; Cora Dvorkin; J. Filippini; S. Fliescher; T.St. Germaine; T. Ghosh; J. A. Grayson; S. Harrison; S. R. Hildebrandt; G. C. Hilton; H. Hui; K. D. Irwin; Ju-Hyung Kang; Kirit S. Karkare; E. Karpel

We present the strongest constraints to date on anisotropies of cosmic microwave background (CMB) polarization rotation derived from 150 GHz data taken by the BICEP2 & Keck Array CMB experiments up to and including the 2014 observing season (BK14). The definition of the polarization angle in BK14 maps has gone through self-calibration in which the overall angle is adjusted to minimize the observed TB and EB power spectra. After this procedure, the QU maps lose sensitivity to a uniform polarization rotation but are still sensitive to anisotropies of polarization rotation. This analysis places constraints on the anisotropies of polarization rotation, which could be generated by CMB photons interacting with axionlike pseudoscalar fields or Faraday rotation induced by primordial magnetic fields. The sensitivity of BK14 maps (∼3u2009u2009μK−arcu2009min) makes it possible to reconstruct anisotropies of the polarization rotation angle and measure their angular power spectrum much more precisely than previous attempts. Our data are found to be consistent with no polarization rotation anisotropies, improving the upper bound on the amplitude of the rotation angle spectrum by roughly an order of magnitude compared to the previous best constraints. Our results lead to an order of magnitude better constraint on the coupling constant of the Chern-Simons electromagnetic term g_(aγ) ≤ 7.2×10^(−2)/H_I (95% confidence) than the constraint derived from the B-mode spectrum, where H_I is the inflationary Hubble scale. This constraint leads to a limit on the decay constant of 10^(−6) ≲ f_a/M_(pl) at mass range of 10^(−33) ≤ ma ≤ 10^(−28)u2009u2009eV for r=0.01, assuming g_(aγ) ∼ α/(2πf_a) with α denoting the fine structure constant. The upper bound on the amplitude of the primordial magnetic fields is 30 nG (95% confidence) from the polarization rotation anisotropies.


arXiv: Instrumentation and Methods for Astrophysics | 2018

BICEP array cryostat and mount design

Michael Crumrine; Peter A. R. Ade; Z. Ahmed; Randol Aikin; K. D. Alexander; Denis Barkats; S. J. Benton; C. A. Bischoff; J. J. Bock; R. Bowens-Rubin; J. A. Brevik; I. Buder; E. Bullock; V. Buza; J. Connors; James Cornelison; Bendan Crill; Marion Dierickx; L. Duband; Cora Dvorkin; J. P. Filippini; S. Fliescher; J. A. Grayson; Grantland Hall; M. Halpern; S. Harrison; S. R. Hildebrandt; G. C. Hilton; H. Hui; K. D. Irwin

Bicep Array is a cosmic microwave background (CMB) polarization experiment that will begin observing at the South Pole in early 2019. This experiment replaces the five Bicep2 style receivers that compose the Keck Array with four larger Bicep3 style receivers observing at six frequencies from 30 to 270GHz. The 95GHz and 150GHz receivers will continue to push the already deep Bicep/Keck CMB maps while the 30/40GHz and 220/270GHz receivers will constrain the synchrotron and galactic dust foregrounds respectively. Here we report on the design and performance of the Bicep Array instruments focusing on the mount and cryostat systems.


The Astrophysical Journal | 2016

BICEP2/KECK ARRAY. VII. MATRIX BASED E/B SEPARATION APPLIED to BICEP2 and the KECK ARRAY

Peter A. R. Ade; Z. Ahmed; R. W. Aikin; K. D. Alexander; D. Barkats; S. J. Benton; C. A. Bischoff; J. J. Bock; R. Bowens-Rubin; J. A. Brevik; I. Buder; E. Bullock; V. Buza; J. Connors; B. P. Crill; L. Duband; Cora Dvorkin; J. Filippini; S. Fliescher; J. A. Grayson; M. Halpern; Sarah M. Harrison; S. R. Hildebrandt; G. C. Hilton; H. Hui; K. D. Irwin; Ju-Hyung Kang; K. S. Karkare; E. Karpel; J. P. Kaufman

A linear polarization field on the sphere can be uniquely decomposed into an E-mode and a B-mode component. These two components are analytically defined in terms of spin-2 spherical harmonics. Maps that contain filtered modes on a partial sky can also be decomposed into E-mode and B-mode components. However, the lack of full sky information prevents orthogonally separating these components using spherical harmonics. In this paper, we present a technique for decomposing an incomplete map into E and B-mode components using E and B eigenmodes of the pixel covariance in the observed map. This method is found to orthogonally define E and B in the presence of both partial sky coverage and spatial filtering. This method has been applied to the BICEP2 and the Keck Array maps and results in reducing E to B leakage from LCDM E-modes to a level corresponding to a tensor-to-scalar ratio of


Proceedings of SPIE | 2016

BICEP3 focal plane design and detector performance

H. Hui; Peter A. R. Ade; Z. Ahmed; K. D. Alexander; M. Amiri; D. Barkats; Steven J. Benton; C. A. Bischoff; J. J. Bock; H. Boenish; R. Bowens-Rubin; I. Buder; E. Bullock; V. Buza; J. Connors; J. Filippini; S. Fliescher; J. A. Grayson; M. Halpern; S. Harrison; G. C. Hilton; V. V. Hristov; K. D. Irwin; Ju-Hyung Kang; K. S. Karkare; E. Karpel; S. Kefeli; S. A. Kernasovskiy; J. M. Kovac; C. L. Kuo

r<1times10^{-4}


arXiv: Instrumentation and Methods for Astrophysics | 2018

BICEP Array: a multi-frequency degree-scale CMB polarimeter

H. Hui; Peter A. R. Ade; Z. Ahmed; Randol Aikin; K. D. Alexander; Denis Barkats; S. J. Benton; C. A. Bischoff; J. J. Bock; R. Bowens-Rubin; J. A. Brevik; I. Buder; E. Bullock; V. Buza; J. Connors; James Cornelison; Brendan Crill; Michael Crumrine; Marion Dierickx; L. Duband; Cora Dvorkin; J. P. Filippini; S. Fliescher; J. A. Grayson; Grantland Hall; M. Halpern; S. Harrison; S. R. Hildebrandt; G. C. Hilton; K. D. Irwin

.


arXiv: Instrumentation and Methods for Astrophysics | 2018

Design and performance of wide-band corrugated walls for the BICEP Array detector modules at 30/40 GHz

Ahmed Soliman; S. J. Benton; C. A. Bischoff; J. J. Bock; E. Bullock; Cora Dvorkin; J. P. Filippini; S. Fliescher; J. A. Grayson; M. Halpern; S. Harrison; S. R. Hildebrandt; G. C. Hilton; H. Hui; K. D. Irwin; Jae Hwan Kang; Kirit S. Karkare; E. Karpel; Jonathan Kaufman; Brian Keating; S. Kefeli; S. A. Kernasovskiy; J. M. Kovac; Chao-Lin Kuo; Nicole Larson; King Lau; Erik M. Leitch; M. Lueker; K. G. Megerian; Lorenzo Moncelsi

BICEP3, the latest telescope in the BICEP/Keck program, started science observations in March 2016. It is a 550mm aperture refractive telescope observing the polarization of the cosmic microwave background at 95 GHz. We show the focal plane design and detector performance, including spectral response, optical efficiency and preliminary sensitivity of the upgraded BICEP3. We demonstrate 9.72 μKCMB√s noise performance of the BICEP3 receiver.


Proceedings of SPIE | 2016

Optical characterization of the BICEP3 CMB polarimeter at the South Pole

K. S. Karkare; Peter A. R. Ade; Z. Ahmed; K. D. Alexander; M. Amiri; D. Barkats; S. J. Benton; C. A. Bischoff; J. J. Bock; H. Boenish; R. Bowens-Rubin; I. Buder; E. Bullock; V. Buza; J. Connors; J. Filippini; S. Fliescher; J. A. Grayson; M. Halpern; S. Harrison; G. C. Hilton; V. V. Hristov; H. Hui; K. D. Irwin; Ju-Hyung Kang; E. Karpel; S. Kefeli; S. A. Kernasovskiy; J. M. Kovac; Chao-Lin Kuo

Bicep Array is the newest multi-frequency instrument in the Bicep/Keck Array program. It is comprised of four 550mm aperture refractive telescopes observing the polarization of the cosmic microwave background (CMB) at 30/40, 95, 150 and 220/270 GHz with over 30,000 detectors. We present an overview of the receiver, detailing the optics, thermal, mechanical, and magnetic shielding design. Bicep Array follows Bicep3s modular focal plane concept, and upgrades to 6 wafer to reduce fabrication with higher detector count per module. The first receiver at 30/40GHz is expected to start observing at the South Pole during the 2019-20 season. By the end of the planned Bicep Array program, we project 0.002 ⪅ σ(r) ⪅ 0.006, assuming current modeling of polarized Galactic foreground and depending on the level of delensing that can be achieved with higher resolution maps from the South Pole Telescope.


arXiv: Instrumentation and Methods for Astrophysics | 2018

Ultra-thin large-aperture vacuum windows for millimeter wavelengths receivers

Marion Dierickx; Denis Barkats; J. M. Kovac; Christopher Pentacoff; Kirit S. Karkare; Nicole Larsen; King Lau; Erik M. Leitch; M. Lueker; Koko G. Megerian; Lorenzo Moncelsi; T. Namikawa; H. Nguyen; R. O'Brient; R. W. Ogburn; Stephen Palladino; C. Pryke; Benjamin Racine; Steffen Richter; Alessandro Schillaci; R. Schwarz; C. Sheehy; Ahmed Soliman; Tyler St Germaine; Zachary K. Staniszewski; B. Steinbach; R. Sudiwala; Grant Teply; K. L. Thompson; J. E. Tolan

BICEP Array is a degree-scale Cosmic Microwave Background (CMB) experiment that will search for primordial B-mode polarization while constraining Galactic foregrounds. BICEP Array will be comprised of four receivers to cover a broad frequency range with channels at 30/40, 95, 150 and 220/270 GHz. The first low-frequency receiver will map synchrotron emission at 30 and 40 GHz and will deploy to the South Pole at the end of 2019. In this paper, we give an overview of the BICEP Array science and instrument, with a focus on the detector module. We designed corrugations in the metal frame of the module to suppress unwanted interactions with the antenna-coupled detectors that would otherwise deform the beams of edge pixels. This design reduces the residual beam systematics and temperature-to-polarization leakage due to beam steering and shape mismatch between polarized beam pairs. We report on the simulated performance of single- and wide-band corrugations designed to minimize these effects. Our optimized design alleviates beam differential ellipticity caused by the metal frame to about 7% over 57% bandwidth (25 to 45 GHz), which is close to the level due the bare antenna itself without a metal frame. Initial laboratory measurements are also presented.


arXiv: Instrumentation and Methods for Astrophysics | 2018

2017 upgrade and performance of BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization

Peter A. R. Ade; Z. Ahmed; Randol Aikin; K. D. Alexander; Denis Barkats; S. J. Benton; C. A. Bischoff; J. J. Bock; Hans Boenish; R. Bowens-Rubin; J. A. Brevik; I. Buder; E. Bullock; V. Buza; Jake Conners; James Cornelison; Brendan Crill; Michael Crumrine; Marion Dierickx; L. Duband; Cora Dvorkin; J. P. Filippini; S. Fliescher; J. A. Grayson; Grantland Hall; M. Halpern; S. Harrison; S. R. Hildebrandt; G. C. Hilton; H. Hui

BICEP3 is a small-aperture refracting cosmic microwave background (CMB) telescope designed to make sensitive polarization maps in pursuit of a potential B-mode signal from inflationary gravitational waves. It is the latest in the Bicep/Keck Array series of CMB experiments located at the South Pole, which has provided the most stringent constraints on inflation to date. For the 2016 observing season, BICEP3 was outfitted with a full suite of 2400 optically coupled detectors operating at 95 GHz. In these proceedings we report on the far field beam performance using calibration data taken during the 2015-2016 summer deployment season in situ with a thermal chopped source. We generate high-fidelity per-detector beam maps, show the array-averaged beam profile, and characterize the differential beam response between co-located, orthogonally polarized detectors which contributes to the leading instrumental systematic in pair differencing experiments. We find that the levels of differential pointing, beamwidth, and ellipticity are similar to or lower than those measured for Bicep2 and Keck Array. The magnitude and distribution of Bicep3’s differential beam mismatch – and the level to which temperature-to-polarization leakage may be marginalized over or subtracted in analysis - will inform the design of next-generation CMB experiments with many thousands of detectors.

Collaboration


Dive into the T. Namikawa's collaboration.

Top Co-Authors

Avatar

G. C. Hilton

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

H. Hui

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

E. Bullock

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. J. Bock

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Fliescher

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge