T. Ott
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. Ott.
The Astrophysical Journal | 2009
S. Gillessen; F. Eisenhauer; Sascha Trippe; Tal Alexander; R. Genzel; F. Martins; T. Ott
We present the results of 16 years of monitoring stellar orbits around the massive black hole in the center of the Milky Way, using high-resolution near-infrared techniques. This work refines our previous analysis mainly by greatly improving the definition of the coordinate system, which reaches a long-term astrometric accuracy of 300 μas, and by investigating in detail the individual systematic error contributions. The combination of a long-time baseline and the excellent astrometric accuracy of adaptive optics data allows us to determine orbits of 28 stars, including the star S2, which has completed a full revolution since our monitoring began. Our main results are: all stellar orbits are fit extremely well by a single-point-mass potential to within the astrometric uncertainties, which are now 6× better than in previous studies. The central object mass is , where the fractional statistical error of 1.5% is nearly independent from R 0, and the main uncertainty is due to the uncertainty in R 0. Our current best estimate for the distance to the Galactic center is R 0 = 8.33 ± 0.35 kpc. The dominant errors in this value are systematic. The mass scales with distance as (3.95 ± 0.06) × 106(R 0/8 kpc)2.19 M ☉. The orientations of orbital angular momenta for stars in the central arcsecond are random. We identify six of the stars with orbital solutions as late-type stars, and six early-type stars as members of the clockwise-rotating disk system, as was previously proposed. We constrain the extended dark mass enclosed between the pericenter and apocenter of S2 at less than 0.066, at the 99% confidence level, of the mass of Sgr A*. This is two orders of magnitudes larger than what one would expect from other theoretical and observational estimates.
Nature | 2012
S. Gillessen; R. Genzel; T. K. Fritz; Eliot Quataert; C. Alig; Andreas Burkert; J. Cuadra; F. Eisenhauer; O. Pfuhl; K. Dodds-Eden; Charles F. Gammie; T. Ott
Measurements of stellar orbits provide compelling evidence that the compact radio source Sagittarius A* at the Galactic Centre is a black hole four million times the mass of the Sun. With the exception of modest X-ray and infrared flares, Sgr A* is surprisingly faint, suggesting that the accretion rate and radiation efficiency near the event horizon are currently very low. Here we report the presence of a dense gas cloud approximately three times the mass of Earth that is falling into the accretion zone of Sgr A*. Our observations tightly constrain the cloud’s orbit to be highly eccentric, with an innermost radius of approach of only ∼3,100 times the event horizon that will be reached in 2013. Over the past three years the cloud has begun to disrupt, probably mainly through tidal shearing arising from the black hole’s gravitational force. The cloud’s dynamic evolution and radiation in the next few years will probe the properties of the accretion flow and the feeding processes of the supermassive black hole. The kilo-electronvolt X-ray emission of Sgr A* may brighten significantly when the cloud reaches pericentre. There may also be a giant radiation flare several years from now if the cloud breaks up and its fragments feed gas into the central accretion zone.
Astronomy and Astrophysics | 2006
A. Eckart; F. K. Baganoff; R. Schödel; Mark R. Morris; R. Genzel; G. C. Bower; D. P. Marrone; James M. Moran; T. Viehmann; Mark W. Bautz; W. N. Brandt; Gordon Garmire; T. Ott; Sascha Trippe; George R. Ricker; C. Straubmeier; D. A. Roberts; Farhad Yusef-Zadeh; Jun-Hui Zhao; Ramprasad Rao
Context. We report new simultaneous near-infrared/sub-millimeter/X-ray observations of the Sgr A* counterpart associated with the massive 3−4 × 10 6 Mblack hole at the Galactic Center. Aims. We investigate the physical processes responsible for the variable emission from Sgr A*. Methods. The observations have been carried out using the NACO adaptive optics (AO) instrument at the European Southern Observatorys Very Large Telescopeand the ACIS-I instrument aboard the Chandra X-ray Observatory as well as the Submillimeter Array SMA �� on Mauna Kea, Hawaii, and the Very Large Array ��� in New Mexico. Results. We detected one moderately bright flare event in the X-ray domain and 5 events at infrared wavelengths. The X-ray flare had an excess 2−8 keV luminosity of about 33 × 10 33 erg/s. The duration of this flare was completely covered in the infrared and it was detected as a simultaneous NIR event with a time lag of ≤10 min. Simultaneous infrared/X-ray observations are available for 4 flares. All simultaneously covered flares, combined with the flare covered in 2003, indicate that the time-lag between the NIR and X-ray flare emission is very small and in agreement with a synchronous evolution. There are no simultaneous flare detections between the NIR/X-ray data and the VLA and SMA data. The excess flux densities detected in the radio and sub-millimeter domain may be linked with the flare activity observed at shorter wavelengths. Conclusions. We find that the flaring state can be explained with a synchrotron self-Compton (SSC) model involving up-scattered sub- millimeter photons from a compact source component. This model allows for NIR flux density contributions from both the synchrotron and SSC mechanisms. Indications for an exponential cutoff of the NIR/MIR synchrotron spectrum allow for a straightforward explanation of the variable and red spectral indices of NIR flares.
Astronomy and Astrophysics | 2006
A. Eckart; F. K. Baganoff; R. Schödel; Mark R. Morris; R. Genzel; Geoffrey C. Bower; D. P. Marrone; James M. Moran; T. Viehmann; Mark W. Bautz; W. N. Brandt; Gordon Garmire; T. Ott; Sascha Trippe; George R. Ricker; C. Straubmeier; D. A. Roberts; Farhad Yusef-Zadeh; Jun-Hui Zhao; Ramprasad Rao
Context. We report new simultaneous near-infrared/sub-millimeter/X-ray observations of the Sgr A* counterpart associated with the massive 3−4 × 10 6 Mblack hole at the Galactic Center. Aims. We investigate the physical processes responsible for the variable emission from Sgr A*. Methods. The observations have been carried out using the NACO adaptive optics (AO) instrument at the European Southern Observatorys Very Large Telescopeand the ACIS-I instrument aboard the Chandra X-ray Observatory as well as the Submillimeter Array SMA �� on Mauna Kea, Hawaii, and the Very Large Array ��� in New Mexico. Results. We detected one moderately bright flare event in the X-ray domain and 5 events at infrared wavelengths. The X-ray flare had an excess 2−8 keV luminosity of about 33 × 10 33 erg/s. The duration of this flare was completely covered in the infrared and it was detected as a simultaneous NIR event with a time lag of ≤10 min. Simultaneous infrared/X-ray observations are available for 4 flares. All simultaneously covered flares, combined with the flare covered in 2003, indicate that the time-lag between the NIR and X-ray flare emission is very small and in agreement with a synchronous evolution. There are no simultaneous flare detections between the NIR/X-ray data and the VLA and SMA data. The excess flux densities detected in the radio and sub-millimeter domain may be linked with the flare activity observed at shorter wavelengths. Conclusions. We find that the flaring state can be explained with a synchrotron self-Compton (SSC) model involving up-scattered sub- millimeter photons from a compact source component. This model allows for NIR flux density contributions from both the synchrotron and SSC mechanisms. Indications for an exponential cutoff of the NIR/MIR synchrotron spectrum allow for a straightforward explanation of the variable and red spectral indices of NIR flares.
The Astrophysical Journal | 2007
H. Maness; F. Martins; Sascha Trippe; R. Genzel; James R. Graham; C. D. Sheehy; Maurizio Salaris; S. Gillessen; Tal Alexander; T. Paumard; T. Ott; R. Abuter; F. Eisenhauer
We classify 329 late-type giants within 1 pc of Sgr A*, using the adaptive optics integral field spectrometer SINFONI on the VLT. These observations represent the deepest spectroscopic data set so far obtained for the Galactic center, reaching a 50% completeness threshold at the approximate magnitude of the helium-burning red clump (KS ~ 15.5 mag). Combining our spectroscopic results with NaCo H and KS photometry, we construct an observed Hertzsprung-Russell diagram, which we quantitatively compare to theoretical distributions of various star formation histories of the inner Galaxy, using a χ2 analysis. Our best-fit model corresponds to continuous star formation over the last 12 Gyr with a top-heavy initial mass function (IMF). The similarity of this IMF to the IMF observed for the most recent epoch of star formation is intriguing and perhaps suggests a connection between recent star formation and the stars formed throughout the history of the Galactic center.
Astronomy and Astrophysics | 2008
Sascha Trippe; S. Gillessen; Ortwin Gerhard; H. Bartko; T. K. Fritz; H. Maness; F. Eisenhauer; F. Martins; T. Ott; K. Dodds-Eden; R. Genzel
Aims. We aim at a detailed description of the kinematic properties of the old, (several Gyrs) late-type CO-absorption star population among the Galactic centre (GC) cluster stars. This cluster is composed of a central supermassive black hole (Sgr A*) and a selfgravitating system of stars. Understanding its kinematics thus offers the opportunity to understand the dynamical interaction between a central point mass and the surrounding stars in general, especially in view of understanding other galactic nuclei. Methods. We applied AO-assisted, near-infrared imaging and integral-field spectroscopy using the instruments NAOS/CONICA and SINFONI at the VLT. We obtained proper motions for 5445 stars, 3D velocities for 664 stars, and acceleration limits (in the sky plane) for 750 stars. Global kinematic properties were analysed using velocity and velocity dispersion distributions, phase-space maps, twopoint correlation functions, and the Jeans equation. Results. We detect for the first time significant cluster rotation in the sense of the general Galactic rotation in proper motions. Out of the 3D velocity dispersion, we derive an improved statistical parallax for the GC of R0 = 8.07 ± 0.32stat ± 0.13sys kpc. The distribution of 3D stellar speeds can be approximated by local Maxwellian distributions. Kinematic modelling provides deprojected 3D kinematic parameters, including the mass profile of the cluster. We find an upper limit of 4% for the amplitude of fluctuations in the phase-space distribution of the cluster stars compared to a uniform, spherical model cluster. Using upper limits on accelerations, we constrain the minimum line-of-sight distances from the plane of Sgr A* of five stars located within the innermost few (projected) arcsec. The stars within 0.7 �� radius from the star group IRS13E do not co-move with this group, making it unlikely that IRS13E is the core of a substantial star cluster. Overall, the GC late-type cluster is described well as a uniform, isotropic, rotating, dynamically relaxed, phase-mixed system.
The Astrophysical Journal | 2017
S. Gillessen; P. M. Plewa; F. Eisenhauer; Re'em Sari; I. Waisberg; M. Habibi; O. Pfuhl; E. M. George; Jason Dexter; S. von Fellenberg; T. Ott; R. Genzel
Using 25 years of data from uninterrupted monitoring of stellar orbits in the Galactic Center, we present an update of the main results from this unique data set: a measurement of mass and distance to Sgr A*. Our progress is not only due to the eight-year increase in time base, but also to the improved definition of the coordinate system. The star S2 continues to yield the best constraints on the mass of and distance to Sgr A*; the statistical errors of and kpc have halved compared to the previous study. The S2 orbit fit is robust and does not need any prior information. Using coordinate system priors, the star S1 also yields tight constraints on mass and distance. For a combined orbit fit, we use 17 stars, which yields our current best estimates for mass and distance: and . These numbers are in agreement with the recent determination of R 0 from the statistical cluster parallax. The positions of the mass, of the near-infrared flares from Sgr A*, and of the radio source Sgr A* agree to within 1 mas. In total, we have determined orbits for 40 stars so far, a sample which consists of 32 stars with randomly oriented orbits and a thermal eccentricity distribution, plus eight stars that we can explicitly show are members of the clockwise disk of young stars, and which have lower-eccentricity orbits.
The Astrophysical Journal | 2011
K. Dodds-Eden; S. Gillessen; T. K. Fritz; F. Eisenhauer; Sascha Trippe; R. Genzel; T. Ott; H. Bartko; O. Pfuhl; G. C. Bower; A. Goldwurm; D. Porquet; G. Trap; F. Yusef-Zadeh
In this paper we examine properties of the variable source Sgr A* in the near-infrared (NIR) using a very extensive Ks-band data set from NACO/VLT observations taken 2004 to 2009. We investigate the variability of Sgr A* with two different photometric methods and analyze its flux distribution. We find Sgr A* is continuously emitting and continuously variable in the near-infrared, with some variability occurring on timescales as long as weeks. The flux distribution can be described by a lognormal distribution at low intrinsic fluxes (. 5 mJy, dereddened with AKs = 2.5). The lognormal distribution has a median flux of �1.1 mJy, but above 5 mJy the flux distribution is significantly flatter (high flux events are more common) than expected for the extrapolation of the lognormal distribution to high fluxes. We make a general identification of the low level emission above 5 mJy as flaring emission and of the low level emission as the quiescent state. We also report here the brightest Ks-band flare ever observed (from August 5th, 2008) which reached an intrinsic Ks-band flux of 27.5 mJy (mKs = 13.5). This flare was a factor 27 increase over the median flux of Sgr A*, close to double the brightness of the star S2, and 40% brighter than the next brightest flare ever observed from Sgr A*. Subject headings: accretion, accretion disks — black hole physics — infrared: general — Galaxy: center
The Astrophysical Journal | 2003
M. J. Reid; K. M. Menten; R. Genzel; T. Ott; R. Schödel; A. Eckart
In 1979, Menten and coworkers accurately determined the position of Sgr A* on an infrared image by aligning the infrared image with positions measured for SiO masers, associated with infrared-bright evolved stars, at radio wavelengths. We now report greatly improved radio positions and, for the first time, proper motions of many stellar SiO masers at the Galactic center. These positions and motions, coupled with better infrared imaging, allow a much improved location of Sgr A* on infrared images. With current data, infrared stars can be placed in a reference frame tied to Sgr A*, to an accuracy of ≈10 mas in position and ≈1 mas yr-1 in motion. The position of Sgr A* is, within uncertainties, consistent with stellar accelerations and the measured orbital focus of the star S2. The star S2 was observed within 16 mas (≈130 AU in projection) of Sgr A* on 2002 May 2. Finally, we find that the central stellar cluster moves with Sgr A* to within ≈70 km s-1.
The Astrophysical Journal | 2013
A. Ballone; M. Schartmann; Andreas Burkert; S. Gillessen; R. Genzel; T. K. Fritz; F. Eisenhauer; O. Pfuhl; T. Ott
The origin of the dense gas cloud G2 discovered in the Galactic Center is still a debated puzzle. G2 might be a diffuse cloud or the result of an outflow from an invisible star embedded in it. We present hydrodynamical simulations of the evolution of different spherically symmetric winds of a stellar object embedded in G2. We find that the interaction with the ambient medium and the extreme gravitational field of the supermassive black hole in the Galactic Center must be taken into account in such a source scenario. The thermal pressure of the hot and dense atmosphere confines the wind, while its ram pressure shapes it via stripping along the orbit, with the details depending on the wind parameters. Tidal forces squeeze the wind near pericenter, reducing it to a thin and elongated filament. We also find that in this scenario most of the Brγ luminosity is expected to come from the densest part of the wind, which has a highly filamentary structure with a low filling factor. For our assumed atmosphere, the observations can be best matched by a mass outflow rate of and a wind velocity of v w = 50 km s–1. These values are comparable with those of a young T Tauri star wind, as already suggested by Scoville & Burkert.