T. Panzeca
University of Palermo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. Panzeca.
Meccanica | 1988
T. Panzeca; Castrenze Polizzotto
SommarioPer un materiale non resistente a trazione in stati di tensione e deformazione triassiali viene utilizzato il postulate di stabilità locale per ottenere appropriate equazioni che mettono in relazione gli stati di deformazione fragile (o fessurativa) con gli stati di tensione. Sono discusse alcune forme alternative di queste equazioni espresse in termini di componenti di tensione e di deformazione, oppure in termini di invarianti delle tensioni e delle deformazioni. I risultati ottenuti comprovano e arricchiscono noti risultati riguardanti i materiali che non resistono a trazione.SummaryFor a material which is incapable of sustaining tensile stresses (no-tension material, NTM), the local stability postulate is utilized in order to derive the appropriate equations which relate, within general 3D situations, cracking strain states and stress states to each other. Several alternative forms of these equations are discussed, either in terms of stress and strain components, or in terms of stress and strain invariants. The results obtained improve known results regarding the NTMs.
European Journal of Mechanics A-solids | 2001
T. Panzeca; H. Fujita Yashima; Maria Salerno
Abstract In the analysis of an elastic two-dimensional solid body by means of the Symmetric Galerkin Boundary Element Method (SGBEM), difficulties arise in the computation of some terms of the solving system coefficients. In fact these coefficients are expressed as double integrals with singularities of order 1/ r 2 , r being the distance between the field and source points. In order to compute these coefficients a strategy based on Schwartzs distribution theory is employed. In this paper the direct stiffness matrix related to the generic node of the free boundary are computed in closed form.
Meccanica | 1988
T. Panzeca; Castrenze Polizzotto
SommarioFacendo riferimento a un solido elastico perfettamente plastico soggetto a carichi ciclici, si considera il problema del moltiplicatore dei carichi ad adattamento e si studiano le equazioni di Eulero-Lagrange ad esso associate. Si trova che la soluzione di queste equazioni descrive il gradiente, rispetto al moltiplicatore dei carichi, della risposta stazionaria del solido ai carichi ciclici al limite di adattamento, e che quindi essa consente di predire la natura del collasso incipiente, Questi risultati vengono quindi estesi al caso più generale di carichi variabili in un dato dominio.SummaryMaking reference to elastic perfectly plastic solids subjected to cyclic loads, the problem of the shakedown load factor is considered and the relevant Euler-Lagrange equations are discussed. It is proved that the solution to these equations describes the gradient, with respect to the load multiplier, of the steady-state response of the solid body to the cyclic loads at the shakedown limit, and that it thus enables one to predict the nature of the impending collapse. These results are then extended to the more general case of loads varying within a given load domain.
Fracture and Structural Integrity | 2014
S. Terravecchia; T. Panzeca; Castrenze Polizzotto
The symmetric Galerkin Boundary Element Method is used to address a class of strain gradient elastic materials featured by a free energy function of the (classical) strain and of its (first) gradient. With respect to the classical elasticity, additional response variables intervene, such as the normal derivative of the displacements on the boundary, and the work-coniugate double tractions. The fundamental solutions - featuring a fourth order partial differential equations (PDEs) system - exhibit singularities which in 2D may be of the order 1/ r 4 . New techniques are developed, which allow the elimination of most of the latter singularities. The present paper has to be intended as a research communication wherein some results, being elaborated within a more general paper [1], are reported.
Journal of Computational and Applied Mathematics | 2014
L. Zito; S. Terravecchia; T. Panzeca
In this paper a strategy to perform elastoplastic analysis with linear kinematic hardening for von Mises materials under plane strain conditions is shown. The proposed approach works with the Symmetric Galerkin Boundary Element Method applied to multidomain problems using a mixed variables approach, to obtain a more stringent solution. The elastoplastic analysis is carried out as the response to the loads and the plastic strains, the latter evaluated through the self-equilibrium stress matrix. This matrix is used both, in the predictor phase, for trial stress evaluation and, in the corrector phase, for solving a nonlinear global system which provides the elastoplastic solution of the active macro-zones, i.e. those zones collecting bem-elements where the plastic consistency condition has been violated. The simultaneous use of active macro-zones gives rise to a nonlocal approach which is characterized by a large decrease in the plastic iteration number, although the proposed strategy requires the inversion and updating of Jacobian operators generally of big dimensions. A strategy developed in order to reduce the computational efforts due to the use of this matrix, in a recursive process, is shown.
Meccanica | 1992
T. Panzeca
It is shown that the long-term response of an elastic-perfectly plastic solid subjected to dynamic actions cyclically varying in time is characterized by stresses, plastic strain rates and velocities that are all periodic with the same period of the external actions, and are in perfect analogy with the quasi-static case; on the other hand, plastic strains and displacements are in general nonperiodic (except in case of alternating plasticity) and may increase indefinitely (except when elastic or plastic shakedown occurs). Besides, the work performed by the external actions in the steady cycle equals the work performed by the elastic stresses (i.e. pertaining to the elastic response of the body to the same actions) through the plastic strain rates.SommarioPer un solido elastico perfettamente plastico soggetto ad azioni cicliche dinamiche si mostra che la risposta a lungo termine è caratterizzata da tensioni, deformazioni plastiche incrementali e velocità tutte periodiche con lo stesso periodo delle azioni esterne, in analogia di quanto avviene nel caso quasi-statico; per contro le deformazioni plastiche e gli spostamenti sono in generale non periodici (tranne nel caso di plasticità alternata) e possono crescere indefinitamente (tranne nel caso di adattamento elastico o plastico). Inoltre il lavoro compiuto dalle azioni esterne in un ciclo stazionario risulta eguale al lavoro delle tensioni elastiche (cioè ottenute come risposta puramente elastica del solido alle stesse azioni) attraverso le deformazioni plastiche incrementali.
Meccanica | 1979
T. Panzeca; Castrenze Polizzotto
SommarioConsiderando un solido elasto-plastico incrudente con superfici di plasticizzazione lineari a tratti e legge di incrudimento lineare a tratti, si fornisce un metodo per la costruzione di maggiorazioni sulle forze interne nonché sulle tensioni limite (incrudite) provocate dai carichi in un punto qualunque del solido ed in un qualunque istante. La storia di carico è incognita, ma i carichi variano allinterno di un dato dominio.SummaryConsidering an elastic-plastic workhardening solid with piecewise linear yield surfaces and a piecewise linear workhardening law, we give a method for constructing bounds to the internal forces and to the (hardened) yield stresses produced by the action of variable loads at any point of the body and at any time. The loading history is supposed to be unknown, but the loads range within a given domain.
Computational Mechanics | 2002
T. Panzeca; Maria Salerno; S. Terravecchia
Computer Methods in Applied Mechanics and Engineering | 2008
T. Panzeca; Maria Salerno; S. Terravecchia; L. Zito
International Journal for Numerical Methods in Engineering | 2009
T. Panzeca; S. Terravecchia; L. Zito