T. Schoof
University of Kiel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. Schoof.
Physics of Plasmas | 2015
Zhandos Moldabekov; T. Schoof; Patrick Ludwig; M. Bonitz; T. S. Ramazanov
The effective potential Φ of a classical ion in a weakly correlated quantum plasma in thermodynamic equilibrium at finite temperature is well described by the random phase approximation screened Coulomb potential. Additionally, collision effects can be included via a relaxation time ansatz (Mermin dielectric function). These potentials are used to study the quality of various statically screened potentials that were recently proposed by Shukla and Eliasson (SE) [Phys. Rev. Lett. 108, 165007 (2012)], Akbari-Moghanjoughi (AM) [Phys. Plasmas 22, 022103 (2015)], and Stanton and Murillo (SM) [Phys. Rev. E 91, 033104 (2015)] starting from quantum hydrodynamic (QHD) theory. Our analysis reveals that the SE potential is qualitatively different from the full potential, whereas the SM potential (at any temperature) and the AM potential (at zero temperature) are significantly more accurate. This confirms the correctness of the recently derived [Michta et al., Contrib. Plasma Phys. 55, 437 (2015)] pre-factor 1/9 in f...
Physical Review Letters | 2015
T. Schoof; Simon Groth; Jan Vorberger; M. Bonitz
The uniform electron gas at finite temperature is of key relevance for many applications in dense plasmas, warm dense matter, laser excited solids, and much more. Accurate thermodynamic data for the uniform electron gas are an essential ingredient for many-body theories, in particular, density-functional theory. Recently, first-principles restricted path integral Monte Carlo results became available, which, however, had to be restricted to moderate degeneracy, i.e., low to moderate densities with r_{s}=r[over ¯]/a_{B}≳1. Here we present novel first-principles configuration path integral Monte Carlo results for electrons for r_{s}≤4. We also present quantum statistical data within the e^{4} approximation that are in good agreement with the simulations at small to moderate r_{s}.
Physical Review E | 2013
M. Bonitz; E. Pehlke; T. Schoof
In a recent letter [P.K. Shukla and B. Eliasson, Phys. Rev. Lett. 108, 165007 (2012)] the discovery of a new attractive force between protons in a hydrogen plasma was reported that would be responsible for the formation of molecules and of a proton lattice. Here we show, based on ab initio density functional theory calculations, that these predictions are wrong and caused by using linearized quantum hydrodynamics beyond the limits of its applicability.
Physica Scripta | 2013
M. Bonitz; E. Pehlke; T. Schoof
In a recent paper (Shukla et al 2013 Phys. Scr. 87 018202) the authors criticized our analysis of the screened proton potential in dense hydrogen that was based on ab initio density functional theory (DFT) simulations (Bonitz et al 2013 Phys. Rev. E 87 037102). In particular, they attributed the absence of the Shukla‐Eliasson attractive force between protons in the DFT simulations to a failure of DFT. Here we discuss in detail their arguments and show that their conclusions are incorrect.
Journal of Chemical Physics | 2015
Tobias Dornheim; T. Schoof; Simon Groth; A. Filinov; M. Bonitz
The uniform electron gas (UEG) at finite temperature is of high current interest due to its key relevance for many applications including dense plasmas and laser excited solids. In particular, density functional theory heavily relies on accurate thermodynamic data for the UEG. Until recently, the only existing first-principle results had been obtained for N = 33 electrons with restricted path integral Monte Carlo (RPIMC), for low to moderate density, rs=r¯/aB≳1. These data have been complemented by configuration path integral Monte Carlo (CPIMC) simulations for rs ≤ 1 that substantially deviate from RPIMC towards smaller rs and low temperature. In this work, we present results from an independent third method-the recently developed permutation blocking path integral Monte Carlo (PB-PIMC) approach [T. Dornheim et al., New J. Phys. 17, 073017 (2015)] which we extend to the UEG. Interestingly, PB-PIMC allows us to perform simulations over the entire density range down to half the Fermi temperature (θ = kBT/EF = 0.5) and, therefore, to compare our results to both aforementioned methods. While we find excellent agreement with CPIMC, where results are available, we observe deviations from RPIMC that are beyond the statistical errors and increase with density.
Physical Review B | 2016
Simon Groth; T. Schoof; Tobias Dornheim; M. Bonitz
The uniform electron gas (UEG) at finite temperature is of key relevance for many applications in the warm dense matter regime, e.g. dense plasmas and laser excited solids. Also, the quality of density functional theory calculations crucially relies on the availability of accurate data for the exchange-correlation energy. Recently, new benchmark results for the N = 33 spin-polarized electrons at high density, r_s = r/a_B <= 4 and low temperature, have been obtained with the configuration path integral Monte Carlo (CPIMC) method [T. Schoof et al., Phys. Rev. Lett. 115, 130402 (2015)]. To achieve these results, the original CPIMC algorithm [T. Schoof et al., Contrib. Plasma Phys. 51, 687 (2011)] had to be further optimized to cope with the fermion sign problem (FSP). It is the purpose of this paper to give detailed information on the manifestation of the FSP in CPIMC simulations of the UEG and to demonstrate how it can be turned into a controllable convergence problem. In addition, we present new thermodynamic results for higher temperatures. Finally, to overcome the limitations of CPIMC towards strong coupling, we invoke an independent method|the recently developed permutation blocking path integral Monte Carlo approach [T. Dornheim et al., accepted for publication in J. Chem Phys., arXiv:1508.03221]. The combination of both approaches is able to yield ab initio data for the UEG over the entire density range, above a temperature of about one half of the Fermi temperature. Comparison with restricted path integral Monte Carlo data [E. W. Brown et al., Phys. Rev. Lett. 110, 146405 (2013)] allows us to quantify the systematic error arising from the free particle nodes.
Contributions To Plasma Physics | 2015
T. Schoof; Simon Groth; M. Bonitz
Recently a number of theoretical studies of the uniform electron gas (UEG) at finite temperature have appeared that are of relevance for dense plasmas, warm dense matter and laser excited solids and thermodynamic density functional theory simulations. In particular, restricted path integral Monte Carlo (RPIMC) results became available which, however, due to the Fermion sign problem, are confined to moderate quantum degeneracy, i.e. low to moderate densities. We have recently developed an alternative approach—configuration PIMC [T. Schoof et al., Contrib. Plasma Phys. 51, 687 (2011)] that allows one to study the so far not accessible high degeneracy regime. Here we present the first step towards UEG simulations using CPIMC by studying implementation and performance of the method for the model case of N = 4 particles. We also provide benchmark data for the total energy. Copyright line will be provided by the publisher
Physical Review B | 2016
Tobias Dornheim; Simon Groth; T. Schoof; C. Hann; M. Bonitz
In a recent publication [S. Groth et al., Phys. Rev. B 93, 085102 (2016)], we have shown that the combination of two complementary quantum Monte Carlo approaches, namely configuration path integral Monte Carlo [T. Schoof et al., Phys. Rev. Lett. 115, 130402 (2015)] and permutation blocking path integral Monte Carlo [T. Dornheim et al., New J. Phys. 17, 073017 (2015)], allows for the accurate computation of thermodynamic properties of the spin-polarized uniform electron gas over a wide range of temperatures and densities without the fixed-node approximation. In the present work, we extend this concept to the unpolarized case, which requires nontrivial enhancements that we describe in detail. We compare our simulation results with recent restricted path integral Monte Carlo data [E. W. Brown et al., Phys. Rev. Lett. 110, 146405 (2013)] for different energy contributions and pair distribution functions and find, for the exchange correlation energy, overall better agreement than for the spin-polarized case, while the separate kinetic and potential contributions substantially deviate.
Physics of Plasmas | 2017
Tobias Dornheim; Simon Groth; Fionn D. Malone; T. Schoof; Travis Sjostrom; W. M. C. Foulkes; M. Bonitz
Warm dense matter is one of the most active frontiers in plasma physics due to its relevance for dense astrophysical objects and for novel laboratory experiments in which matter is being strongly compressed, e.g., by high-power lasers. Its description is theoretically very challenging as it contains correlated quantum electrons at finite temperature—a system that cannot be accurately modeled by standard analytical or ground state approaches. Recently, several breakthroughs have been achieved in the field of fermionic quantum Monte Carlo simulations. First, it was shown that exact simulations of a finite model system ( 30…100 electrons) are possible, which avoid any simplifying approximations such as fixed nodes [Schoof et al., Phys. Rev. Lett. 115, 130402 (2015)]. Second, a novel way to accurately extrapolate these results to the thermodynamic limit was reported by Dornheim et al. [Phys. Rev. Lett. 117, 156403 (2016)]. As a result, now thermodynamic results for the warm dense electron gas are available, w...
arXiv: Statistical Mechanics | 2014
T. Schoof; Simon Groth; M. Bonitz
In low-temperature high-density plasmas quantum effects of the electrons are becoming increasingly important. This requires the development of new theoretical and computational tools. Quantum Monte Carlo methods are among the most successful approaches to first-principle simulations of many-body quantum systems. In this chapter we present a recently developed method—the configuration path integral Monte Carlo (CPIMC) method for moderately coupled, highly degenerate fermions at finite temperatures. It is based on the second quantization representation of the \(N\)-particle density operator in a basis of (anti-)symmetrized \(N\)-particle states (configurations of occupation numbers) and allows to tread arbitrary pair interactions in a continuous space. We give a detailed description of the method and discuss the application to electrons or, more generally, Coulomb-interacting fermions. As a test case we consider a few quantum particles in a one-dimensional harmonic trap. Depending on the coupling parameter (ratio of the interaction energy to kinetic energy), the method strongly reduces the sign problem as compared to direct path integral Monte Carlo (DPIMC) simulations in the regime of strong degeneracy which is of particular importance for dense matter in laser plasmas or compact stars. In order to provide a self-contained introduction, the chapter includes a short introduction to Metropolis Monte Carlo methods and the second quantization of quantum mechanics.