T. Schweyer
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. Schweyer.
Nature | 2015
J. Greiner; Paolo A. Mazzali; D. Alexander Kann; Thomas Krühler; E. Pian; Simon Prentice; E Felipe Olivares; A. Rossi; Sylvio Klose; Stefan Taubenberger; F. Knust; Paulo M. J. Afonso; Chris Ashall; J. Bolmer; C. Delvaux; R. Diehl; Jonathan Elliott; Robert Filgas; Johan Peter Uldall Fynbo; John F. Graham; Ana Nicuesa Guelbenzu; Shiho Kobayashi; G. Leloudas; Sandra Savaglio; Patricia Schady; S. Schmidl; T. Schweyer; V. Sudilovsky; M. Tanga; Adria C. Updike
A new class of ultra-long-duration (more than 10,000 seconds) γ-ray bursts has recently been suggested. They may originate in the explosion of stars with much larger radii than those producing normal long-duration γ-ray bursts or in the tidal disruption of a star. No clear supernova has yet been associated with an ultra-long-duration γ-ray burst. Here we report that a supernova (SN 2011kl) was associated with the ultra-long-duration γ-ray burst GRB 111209A, at a redshift z of 0.677. This supernova is more than three times more luminous than type Ic supernovae associated with long-duration γ-ray bursts, and its spectrum is distinctly different. The slope of the continuum resembles those of super-luminous supernovae, but extends further down into the rest-frame ultraviolet implying a low metal content. The light curve evolves much more rapidly than those of super-luminous supernovae. This combination of high luminosity and low metal-line opacity cannot be reconciled with typical type Ic supernovae, but can be reproduced by a model where extra energy is injected by a strongly magnetized neutron star (a magnetar), which has also been proposed as the explanation for super-luminous supernovae.
The Astrophysical Journal | 2015
J. Greiner; Derek B. Fox; Patricia Schady; T. Krühler; Michele Trenti; A. Cikota; J. Bolmer; J. Elliott; C. Delvaux; Rosalba Perna; P. M. J. Afonso; D. A. Kann; Sylvio Klose; Sandra Savaglio; S. Schmidl; T. Schweyer; M. Tanga; K. Varela
We present the first uniform treatment of long duration gamma-ray burst (GRB) host galaxy detections and upper limits over the redshift range , a key epoch for observational and theoretical efforts to understand the processes, environments, and consequences of early cosmic star formation (SF). We contribute deep imaging observations of 13 GRB positions yielding the discovery of 8 new host galaxies. We use this data set in tandem with previously published observations of 31 further GRB positions to estimate or constrain the host galaxy rest-frame ultraviolet (UV; ?) absolute magnitudes . We then use the combined set of 44 estimates and limits to construct the luminosity function (LF) for GRB host galaxies over and compare it to expectations from Lyman break galaxy (LBG) photometric surveys with the Hubble Space Telescope. Adopting standard prescriptions for the luminosity dependence of galaxy dust obscuration (and hence, total SF rate), we find that our LF is compatible with LBG observations over a factor of 600? in host luminosity, from = ?22.5 mag to >?15.6 mag, and with extrapolations of the assumed Schechter-type LF well beyond this range. We review proposed astrophysical and observational biases for our sample, and find that they are for the most part minimal. We therefore conclude, as the simplest interpretation of our results, that GRBs successfully trace UV metrics of cosmic SF over the range . Our findings suggest that GRBs provide an accurate picture of star formation processes from out to the highest redshifts.
The Astrophysical Journal | 2016
Mauri J. Valtonen; S. Zola; S. Ciprini; A. Gopakumar; Katsura Matsumoto; Kozo Sadakane; M. Kidger; Kosmas D. Gazeas; K. Nilsson; A. Berdyugin; V. Piirola; H. Jermak; Kiran S. Baliyan; F. Alicavus; David Boyd; M. Campas Torrent; F. Campos; J. Carrillo Gómez; Daniel B. Caton; V. Chavushyan; J. Dalessio; B. Debski; D. Dimitrov; M. Drozdz; H. Er; A. Erdem; A. Escartin Pérez; V. Fallah Ramazani; A. V. Filippenko; Shashikiran Ganesh
OJ 287 is a quasi-periodic quasar with roughly 12 year optical cycles. It displays prominent outbursts that are predictable in a binary black hole model. The model predicted a major optical outburst in 2015 December. We found that the outburst did occur within the expected time range, peaking on 2015 December 5 at magnitude 12.9 in the optical R-band. Based on Swift/XRT satellite measurements and optical polarization data, we find that it included a major thermal component. Its timing provides an accurate estimate for the spin of the primary black hole,
Astronomy and Astrophysics | 2015
Patricia Schady; T. Krühler; J. Greiner; John F. Graham; D. A. Kann; J. Bolmer; C. Delvaux; J. Elliott; Sylvio Klose; F. Knust; A. Nicuesa Guelbenzu; A. Rossi; Sandra Savaglio; S. Schmidl; T. Schweyer; V. Sudilovsky; M. Tanga; Nial R. Tanvir; K. Varela; P. Wiseman
\chi =0.313\pm 0.01
The Astrophysical Journal | 2017
Ting Wan Chen; Patricia Schady; Lin Xiao; J. J. Eldridge; T. Schweyer; Chien Hsiu Lee; Po-Chieh Yu; S. J. Smartt; C. Inserra
. The present outburst also confirms the established general relativistic properties of the system such as the loss of orbital energy to gravitational radiation at the 2% accuracy level, and it opens up the possibility of testing the black hole no-hair theorem with 10% accuracy during the present decade.
Astronomy and Astrophysics | 2017
F. Knust; J. Greiner; H. van Eerten; Patricia Schady; D. A. Kann; T.-W. Chen; C. Delvaux; John F. Graham; Sylvio Klose; T. Krühler; Nj McConnell; A. Nicuesa Guelbenzu; Daniel A. Perley; S. Schmidl; T. Schweyer; M. Tanga; K. Varela
Over the last decade there has been immense progress in the follow-up of short and long gamma-ray bursts (GRBs), resulting in a significant rise in the detection rate of X-ray and optical afterglows, in the determination of GRB redshifts, and of the identification of the underlying host galaxies. Nevertheless, our theoretical understanding of the progenitors and central engines powering these vast explosions is lagging behind, and a newly identified class of ultra-long GRBs has fuelled speculation on the existence of a new channel of GRB formation. In this paper we present high signal-to-noise X-shooter observations of the host galaxy of GRB 130925A, which is the fourth unambiguously identified ultra-long GRB, with prompt -ray emission detected for 20 ks. The GRB line of sight was close to the host galaxy nucleus, and our spectroscopic observations cover this region along the bulge/disk of the galaxy, and a bright star-forming region within the outskirts of the galaxy. From our broad wavelength coverage, we obtain accurate metallicity and dust-extinction measurements at the galaxy nucleus and at an outer star-forming region, and measure a super-solar metallicity at both locations, placing this galaxy within the 10 20% most metal-rich GRB host galaxies. Such a high metal enrichment has significant implications on the progenitor models of both long and ultra-long GRBs, although the edge-on orientation of the host galaxy does not allow us to rule out a large metallicity variation along our line of sight. The spatially resolved spectroscopic observations presented in this paper offer important insight into variations in the metal and dust abundance within GRB host galaxies. However, they also illustrate the need for integral field unit observations on a larger sample of GRB host galaxies of a variety of metallicities to provide a more quantitative view on the relation between the GRB circumburst environment and the galaxy-whole properties.
Astronomy and Astrophysics | 2016
K. Varela; H. van Eerten; J. Greiner; Patricia Schady; J. Elliott; V. Sudilovsky; T. Krühler; A. J. van der Horst; J. Bolmer; F. Knust; Claudio Agurto; Francisco Azagra; A. Belloche; Frank Bertoldi; C. De Breuck; C. Delvaux; Robert Filgas; John F. Graham; D. A. Kann; Sylvio Klose; K. M. Menten; A. Nicuesa Guelbenzu; A. Rossi; S. Schmidl; F. Schuller; T. Schweyer; M. Tanga; A. Weiss; P. Wiseman; F. Wyrowski
Superluminous supernovae (SLSNe) are found predominantly in dwarf galaxies, indicating that their progenitors have a low metallicity. However, the most nearby SLSN to date, SN 2017egm, occurred in the spiral galaxy NGC 3191, which has a relatively high stellar mass and correspondingly high metallicity. In this paper, we present detailed analysis of the nearby environment of SN 2017egm using MaNGA IFU data, which provides spectral data on kiloparsec scales. From the velocity map we find no evidence that SN 2017egm occurred within some intervening satellite galaxy, and at the SN position most metallicity diagnostics yield a solar and above solar metallicity (12 + log (O/H) = 8.8-9.1). Additionally we measure a small H-alpha equivalent width (EW) at the SN position of just 34 Angs, which is one of the lowest EWs measured at any SLSN or Gamma-Ray Burst position, and indicative of the progenitor star being comparatively old. We also compare the observed properties of NGC 3191 with other SLSN host galaxies. The solar-metallicity environment at the position of SN 2017egm presents a challenge to our theoretical understanding, and our spatially resolved spectral analysis provides further constraints on the progenitors of SLSNe.
The Astrophysical Journal | 2018
T. Zafar; K. E. Heintz; J. P. U. Fynbo; Daniele Malesani; J. Bolmer; C. Ledoux; M. Arabsalmani; L. Kaper; Sergio Campana; Rhaana L. C. Starling; J. Selsing; D. A. Kann; Antonio de Ugarte Postigo; T. Schweyer; L. Christensen; P. Møller; J. Japelj; Daniel A. Perley; Nial R. Tanvir; Paolo D'Avanzo; Dieter H. Hartmann; J. Hjorth; S. Covino; B. Sbarufatti; P. Jakobsson; L. Izzo; R. Salvaterra; Valerio D'Elia; D. Xu
Context. Short-duration gamma-ray bursts (GRBs) with extended emission form a subclass of short GRBs, comprising about 15% of the short-duration sample. Afterglow detections of short GRBs are also rare (about 30%) because of their lower luminosity. Aims. We present a multiband data set of the short burst with extended emission, GRB 150424A, comprising of GROND observations, complemented with data from Swift/UVOT, Swift/XRT, HST, Keck/LRIS, and data points from the literature. The GRB 150424A afterglow shows an extended plateau phase, lasting about 8 h. The analysis of this unique GRB afterglow might shed light on the understanding of afterglow plateau emission, the nature of which is still under debate. Methods. We present a phenomenological analysis made by applying fireball closure relations and interpret the findings in the context of the fireball model. We discuss the plausibility of a magnetar as a central engine, which would be responsible for additional and prolonged energy injection into the fireball. Results. We find convincing evidence for energy injection into the afterglow of GRB 150424A. We find that a magnetar spin-down as the source for a prolonged energy injection requires that at least 4% of the spin-down energy is converted into radiation.
Astronomy and Astrophysics | 2018
J. Greiner; J. Bolmer; M. H. Wieringa; A. J. van der Horst; D. Petry; S. Schulze; F. Knust; G. De Bruyn; T. Krühler; P. Wiseman; Sylvio Klose; C. Delvaux; John F. Graham; D. A. Kann; A. Moin; A. Nicuesa-Guelbenzu; Patricia Schady; S. Schmidl; T. Schweyer; M. Tanga; S. Tingay; H. van Eerten; K. Varela
Aims. The aim of the study is to constrain the physics of gamma-ray bursts (GRBs) by analysing the multi-wavelength afterglow data set of GRB 121024A that covers the full range from radio to X-rays. Methods. Using multi-epoch broad-band observations of the GRB 121024A afterglow, we measured the three characteristic break frequencies of the synchrotron spectrum. We used six epochs of combined XRT and GROND data to constrain the temporal slopes, the dust extinction, the X-ray absorption, and the spectral slope with high accuracy. Two more epochs of combined data from XRT, GROND, APEX, CARMA, and EVLA were used to set constraints on the break frequencies and therefore on the micro-physical and dynamical parameters. Results. The XRT and GROND light curves show a simultaneous and achromatic break at around 49 ks. As a result, the crossing of the synchrotron cooling break is no suitable explanation for the break in the light curve. The multi wavelength data allow us to test two plausible scenarios explaining the break: a jet break, and the end of energy injection. The jet-break scenario requires a hard electron spectrum, a very low cooling break frequency, and a non-spreading jet. The energy injection avoids these problems, but requires
Galaxies | 2016
S. Zola; Mauri J. Valtonen; G. Bhatta; A. Goyal; B. Debski; A. Baran; J. Krzesinski; Michal Siwak; S. Ciprini; A. Gopakumar; H. Jermak; K. Nilsson; Daniel E. Reichart; Katsura Matsumoto; Kozo Sadakane; Kosmas D. Gazeas; M. Kidger; V. Piirola; F. Alicavus; K. S. Baliyan; A. Berdyugin; David Boyd; M. Campas Torrent; F. Campos; J. Carrillo Gómez; Daniel B. Caton; V. Chavushyan; J. Dalessio; D. Dimitrov; M. Drozdz
\epsilon_e > 1 (k = 2)