T. Sieber
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. Sieber.
Hyperfine Interactions | 2000
D. Habs; O. Kester; T. Sieber; H. Bongers; S. Emhofer; P. Reiter; P. G. Thirolf; G. Bollen; J. Äystö; O. Forstner; H.L. Ravn; T. Nilsson; M. Oinonen; H. Simon; J. Cederkall; F. Ames; P. Schmidt; G. Huber; L. Liljeby; O. Skeppstedt; Karl-Gunnar Rensfelt; F. Wenander; B. Jonson; G. Nyman; R. von Hahn; H. Podlech; R. Repnow; Ch. Gund; D. Schwalm; A. Schempp
The Radioactive Beam Experiment REX-ISOLDE [1–3] is a pilot experiment at ISOLDE (CERN) testing the new concept of post acceleration of radioactive ion beams by using charge breeding of the ions in a high charge state ion source and the efficient acceleration of the highly charged ions in a short LINAC using modern ion accelerator structures. In order to prepare the ions for the experiments singly charged radioactive ions from the on-line mass separator ISOLDE will be cooled and bunched in a Penning trap, charge bred in an electron beam ion source (EBIS) and finally accelerated in the LINAC. The LINAC consists of a radiofrequency quadrupole (RFQ) accelerator, which accelerates the ions up to 0.3 MeV/u, an interdigital H-type (IH) structure with a final energy between 1.1 and 1.2 MeV/u and three seven gap resonators, which allow the variation of the final energy. With an energy of the radioactive beams between 0.8 MeV/u and 2.2 MeV/u a wide range of experiments in the field of nuclear spectroscopy, astrophysics and solid state physics will be addressed by REX-ISOLDE.
Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms | 2003
O. Kester; T. Sieber; S. Emhofer; F. Ames; K. Reisinger; P. Reiter; P. G. Thirolf; R. Lutter; D. Habs; B. H. Wolf; G. Huber; P. Schmidt; A. N. Ostrowski; R. von Hahn; R. Repnow; J. Fitting; M. Lauer; H. Scheit; D. Schwalm; H. Podlech; A. Schempp; U. Ratzinger; O. Forstner; F. Wenander; Joakim Cederkäll; T. Nilsson; M. Lindroos; H. O. U. Fynbo; S. Franchoo; U. C. Bergmann
In 2001 the linear accelerator of the Radioactive beam EXperiment (REX-ISOLDE) delivered for the first time accelerated radioactive ion beams, at a beam energy of 2 MeV/u. REX-ISOLDE uses the method of charge-state breeding, in order to enhance the charge state of the ions before injection into the LINAC. Radioactive singly-charged ions from the on-line mass separator ISOLDE are first accumulated in a Penning trap, then charge bred to an A/q < 4.5 in an electron beam ion source (EBIS) and finally accelerated in a LINAC from 5 keV/u to energies between 0.8 and 2.2 MeV/u. Dedicated measurements with REXTRAP, the transfer line and the EBIS have been carried out in conjunction with the first commissioning of the accelerator. Thus the properties of the different elements could be determined for further optimization of the system. In two test beam times in 2001 stable and radioactive Na isotopes (Na-23-Na-26) have been accelerated and transmitted to a preliminary target station. There Ni-58- and Be-9- and H-2-targets have been used to study exited states via Coulomb excitation and neutron transfer reactions. One MINIBALL triple cluster detector was used together with a double sided silicon strip detector to detect scattered particles in coincidence with gamma-rays. The aim was to study the operation of the detector under realistic conditions with gamma-background from the beta-decay of the radioactive ions and from the cavities. Recently for efficient detection eight tripple Ge-detectors of MINIBALL and a double sided silicon strip detector have been installed. We will present the first results obtained in the commissioning experiments and will give an overview of realistic beam parameters for future experiments to be started in the spring 2002.
Review of Scientific Instruments | 2010
M. Lange; M. Froese; Sebastian Menk; J. Varju; Robin Bastert; Klaus Blaum; J. R. Crespo López-Urrutia; Florian Fellenberger; M. Grieser; R. von Hahn; O. Heber; Kai-Uwe Kühnel; Felix Laux; D. A. Orlov; M. L. Rappaport; R. Repnow; C. D. Schröter; D. Schwalm; Andrey Shornikov; T. Sieber; Y. Toker; J. Ullrich; A. Wolf
We report on the realization and operation of a fast ion beam trap of the linear electrostatic type employing liquid helium cooling to reach extremely low blackbody radiation temperature and residual gas density and, hence, long storage times of more than 5 min which are unprecedented for keV ion beams. Inside a beam pipe that can be cooled to temperatures <15 K, with 1.8 K reached in some locations, an ion beam pulse can be stored at kinetic energies of 2-20 keV between two electrostatic mirrors. Along with an overview of the cryogenic trap design, we present a measurement of the residual gas density inside the trap resulting in only 2 x 10(3) cm(-3), which for a room temperature environment corresponds to a pressure in the 10(-14) mbar range. The device, called the cryogenic trap for fast ion beams, is now being used to investigate molecules and clusters at low temperatures, but has also served as a design prototype for the cryogenic heavy-ion storage ring currently under construction at the Max-Planck Institute for Nuclear Physics.
Review of Scientific Instruments | 2016
R. von Hahn; Arno Becker; Felix A. Berg; Klaus Blaum; Christian Breitenfeldt; H. Fadil; Florian Fellenberger; M. Froese; S. George; Jürgen Göck; M. Grieser; Florian Grussie; Elisabeth Anna Guerin; O. Heber; Philipp Herwig; Jonas Karthein; Claude Krantz; Holger Kreckel; M. Lange; Felix Laux; Svenja Lohmann; Sebastian Menk; Christian Meyer; Priyadarsini Mishra; O Novotný; A. P. O’Connor; D. A. Orlov; M. L. Rappaport; R. Repnow; Sunny Saurabh
An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.
Nuclear Physics | 2004
H. Scheit; O. Niedermaier; Monica Pantea; F. Aksouh; C. Alvarez; F. Ames; T. Behrens; V. Bildstein; H. Boie; P. Butler; J. Cederkäll; Thomas Davinson; P. Delahaye; P. Van Duppen; J. Eberth; S. Emhofer; J. Fitting; S. Franchoo; R. Gernhäuser; G. Gersch; D. Habs; Rainer Hahn; H. Hess; A. M. Hurst; M. Huyse; O. N. Ivanov; J. Iwanicki; O. Kester; F. Köck; T. Kröll
After the successful commissioning of the radioactive beam experiment at ISOLDE (REX-ISOLDE) — an accelerator for exotic nuclei produced by ISOLDE — first physics experiments using these beams were performed. Initial experiments focused on the region of deformation in the vicinity of the neutron-rich Na and Mg isotopes. Preliminary results show the high potential and physics opportunities offered by the exotic isotope accelerator REX in conjunction with the modern Germanium γ spectrometer MINIBALL.
Physical Review C | 2008
N. Bree; I. Stefanescu; P. A. Butler; J. Cederkall; T. Davinson; P. Delahaye; J. Eberth; D. V. Fedorov; V. N. Fedosseev; L. M. Fraile; S. Franchoo; G. Georgiev; K. Gladnishki; M. Huyse; O. Ivanov; J. Iwanicki; J. Jolie; U. Köster; T. Kröll; R. Krücken; B. A. Marsh; O. Niedermaier; P. Reiter; H. Scheit; D. Schwalm; T. Sieber; J. Van de Walle; P. Van Duppen; N. Warr; D. Weisshaar
The B(E2;0+2+) value in 68Ni has been measured using Coulomb excitation at safe energies. The 68Ni radioactive beam was postaccelerated at the CERN on-line isotope mass separator (ISOLDE) facility to 2.9 MeV/u and directed to a 108Pd target. The emitted rays were detected by the MINIBALL detector array. Not only directly registered but also indirectly deduced information on the nucleus emitting the ray was used to perform the Doppler correction, leading to a larger center-of-mass angular range to infer the excitation cross section. The obtained value of 2.8×102e2 fm4 is in good agreement with the value measured at intermediate energy Coulomb excitation, confirming the low 0+2+ transition probability.
Proceedings of the International Conference on Frontiers in Nuclear Structure, Astrophysics, and Reactions - FINUSTAR, Kos, Greece, 12-17 Sept. 2005. AIP Conference Proceedings 2006; (2006) | 2006
Th. Kröll; T. Behrens; R. Krücken; T. Faestermann; R. Gernhäuser; M. Mahgoub; P. Maierbeck; Michael Munch; F. Ames; D. Habs; O. Kester; R. Lutter; Th. Morgan; M. Pasini; K. Rudolph; P. G. Thirolf; V. Bildstein; O. Niedermaier; H. Scheit; D. Schwalm; D. Martin; A. Scherillo; N. Warr; D. Weisshaar; J. Iwanicki; P. A. Butler; J. Cederkall; P. Delahaye; L. M. Fraile; G. Georgiev
We report on the “safe” Coulomb excitation of neutron‐rich Cd isotopes in the vicinity of the doubly magic nucleus 132Sn. The radioactive nuclei have been produced by ISOLDE at CERN and postaccelerated by the REX‐ISOLDE facility. The γ‐decay of excited states has been detected by the MINIBALL array. Preliminary results for the B(E2) values of 122,124Cd are consistent with expectations from phenomenological systematics.
Physical Review C | 2008
N. Bree; I. Stefanescu; P. A. Butler; J. Cederkaell; Thomas Davinson; P. Delahaye; J. Eberth; D. V. Fedorov; V. N. Fedosseev; L. M. Fraile; S. Franchoo; G. Georgiev; K. Gladnishki; M. Huyse; O. Ivanov; J. Iwanicki; J. Jolie; U. Koester; Th. Kroell; R. Kruecken; B. A. Marsh; O. Niedermaier; P. Reiter; H. Scheit; D. Schwalm; T. Sieber; J. Van de Walle; P. Van Duppen; N. Warr; D. Weisshaar
The B(E2;0+2+) value in 68Ni has been measured using Coulomb excitation at safe energies. The 68Ni radioactive beam was postaccelerated at the CERN on-line isotope mass separator (ISOLDE) facility to 2.9 MeV/u and directed to a 108Pd target. The emitted rays were detected by the MINIBALL detector array. Not only directly registered but also indirectly deduced information on the nucleus emitting the ray was used to perform the Doppler correction, leading to a larger center-of-mass angular range to infer the excitation cross section. The obtained value of 2.8×102e2 fm4 is in good agreement with the value measured at intermediate energy Coulomb excitation, confirming the low 0+2+ transition probability.
Frontiers in Nuclear Structure, Astrophysics, and Reactions: FINUSTAR 2. | 2008
J. Van de Walle; F. Aksouh; F. Ames; T. Behrens; V. Bildstein; A. Blazhev; J. Cederkall; E. Clément; T. E. Cocolios; T. Davinson; P. Delahaye; J. Eberth; A. Ekström; D. V. Fedorov; V. N. Fedosseev; L. M. Fraile; S. Franchoo; R. Gernhäuser; G. Georgiev; D. Habs; K. Heyde; G. Huber; M. Huyse; F. Ibrahim; O. Ivanov; J. Iwanicki; J. Jolie; O. Kester; U. Köster; T. Kröll
Neutron rich Zinc isotopes, including the N=50 nucleus Zn-80, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2(+) states. For the first time, an excited state in Zn-80 was observed and the 2(1)(+) state in Zn-78 was established. The measured B(E2,2(1)(+) -> 0(1)(+)) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N=50 isotones indicate a good N=50 shell closure and a strong Z=28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus Ni-78.
Physical Review Letters | 2007
J. Van de Walle; F. Aksouh; F. Ames; T. Behrens; V. Bildstein; A. Blazhev; J. Cederkall; E. Clement; T. E. Cocolios; Thomas Davinson; P. Delahaye; J. Eberth; A. Ekström; D. V. Fedorov; Valentin Fedosseev; L. M. Fraile; S. Franchoo; R. Gernhäuser; G. Georgiev; D. Habs; K. Heyde; G. Huber; M. Huyse; F. Ibrahim; O. Ivanov; J. Iwanicki; J. Jolie; O. Kester; U. Köster; T. Kröll
Neutron-rich, radioactive Zn isotopes were investigated at the Radioactive Ion Beam facility REX-ISOLDE (CERN) using low-energy Coulomb excitation. The energy of the 2(1)+ state in 78Zn could be firmly established and for the first time the 2+ --> 0(1)+ transition in 80Zn was observed at 1492(1) keV. B(E2,2(1)+ --> 0(1)+) values were extracted for (74,76,78,80)Zn and compared to large scale shell model calculations. With only two protons outside the Z=28 proton core, 80Zn is the lightest N=50 isotone for which spectroscopic information has been obtained to date. Two sets of advanced shell model calculations reproduce the observed B(E2) systematics. The results for N=50 isotones indicate a good N=50 shell closure and a strong Z=28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78Ni.