Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Sumi is active.

Publication


Featured researches published by T. Sumi.


The Astrophysical Journal | 2008

The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution

Mario Juric; Željko Ivezić; Alyson M. Brooks; Robert H. Lupton; David J. Schlegel; Douglas P. Finkbeiner; Nikhil Padmanabhan; Nicholas A. Bond; Branimir Sesar; Constance M. Rockosi; Gillian R. Knapp; James E. Gunn; T. Sumi; Donald P. Schneider; John C. Barentine; Howard J. Brewington; J. Brinkmann; Masataka Fukugita; Michael Harvanek; S. J. Kleinman; Jurek Krzesinski; Dan Long; Eric H. Neilsen; Atsuko Nitta; Stephanie A. Snedden; Donald G. York

Using the photometric parallax method we estimate the distances to ~48 million stars detected by the Sloan Digital Sky Survey (SDSS) and map their three-dimensional number density distribution in the Galaxy. The currently available data sample the distance range from 100 pc to 20 kpc and cover 6500 deg2 of sky, mostly at high Galactic latitudes (|b| > 25). These stellar number density maps allow an investigation of the Galactic structure with no a priori assumptions about the functional form of its components. The data show strong evidence for a Galaxy consisting of an oblate halo, a disk component, and a number of localized overdensities. The number density distribution of stars as traced by M dwarfs in the solar neighborhood (D < 2 kpc) is well fit by two exponential disks (the thin and thick disk) with scale heights and lengths, bias corrected for an assumed 35% binary fraction, of H1 = 300 pc and L1 = 2600 pc, and H2 = 900 pc and L2 = 3600 pc, and local thick-to-thin disk density normalization ρthick(R☉)/ρthin(R☉) = 12% . We use the stars near main-sequence turnoff to measure the shape of the Galactic halo. We find a strong preference for oblate halo models, with best-fit axis ratio c/a = 0.64, ρH ∝ r−2.8 power-law profile, and the local halo-to-thin disk normalization of 0.5%. Based on a series of Monte Carlo simulations, we estimate the errors of derived model parameters not to be larger than ~20% for the disk scales and ~10% for the density normalization, with largest contributions to error coming from the uncertainty in calibration of the photometric parallax relation and poorly constrained binary fraction. While generally consistent with the above model, the measured density distribution shows a number of statistically significant localized deviations. In addition to known features, such as the Monoceros stream, we detect two overdensities in the thick disk region at cylindrical galactocentric radii and heights (R,Z) ~ (6.5,1.5) kpc and (R,Z) ~ (9.5,0.8) kpc and a remarkable density enhancement in the halo covering over 1000 deg2 of sky toward the constellation of Virgo, at distances of ~6-20 kpc. Compared to counts in a region symmetric with respect to the l = 0° line and with the same Galactic latitude, the Virgo overdensity is responsible for a factor of 2 number density excess and may be a nearby tidal stream or a low-surface brightness dwarf galaxy merging with the Milky Way. The u − g color distribution of stars associated with it implies metallicity lower than that of thick disk stars and consistent with the halo metallicity distribution. After removal of the resolved overdensities, the remaining data are consistent with a smooth density distribution; we detect no evidence of further unresolved clumpy substructure at scales ranging from ~50 pc in the disk to ~1-2 kpc in the halo.


Nature | 2012

One or more bound planets per Milky Way star from microlensing observations

A. Cassan; D. Kubas; J. P. Beaulieu; M. Dominik; K. Horne; J. Greenhill; Joachim Wambsganss; J. Menzies; A. Williams; U. G. Jørgensen; A. Udalski; D. P. Bennett; M. D. Albrow; V. Batista; S. Brillant; J. A. R. Caldwell; Andrew A. Cole; C. Coutures; K. H. Cook; S. Dieters; D. Dominis Prester; J. Donatowicz; P. Fouqué; K. Hill; N. Kains; S. Kane; J.-B. Marquette; Roland Martin; K. R. Pollard; K. C. Sahu

Most known extrasolar planets (exoplanets) have been discovered using the radial velocity or transit methods. Both are biased towards planets that are relatively close to their parent stars, and studies find that around 17–30% (refs 4, 5) of solar-like stars host a planet. Gravitational microlensing, on the other hand, probes planets that are further away from their stars. Recently, a population of planets that are unbound or very far from their stars was discovered by microlensing. These planets are at least as numerous as the stars in the Milky Way. Here we report a statistical analysis of microlensing data (gathered in 2002–07) that reveals the fraction of bound planets 0.5–10 au (Sun–Earth distance) from their stars. We find that of stars host Jupiter-mass planets (0.3–10 MJ, where MJ = 318 M⊕ and M⊕ is Earth’s mass). Cool Neptunes (10–30 M⊕) and super-Earths (5–10 M⊕) are even more common: their respective abundances per star are and . We conclude that stars are orbited by planets as a rule, rather than the exception.


Nature | 2011

Unbound or distant planetary mass population detected by gravitational microlensing

T. Sumi; K. Kamiya; D. P. Bennett; I. A. Bond; F. Abe; C. S. Botzler; A. Fukui; K. Furusawa; J. B. Hearnshaw; Y. Itow; P. M. Kilmartin; A. Korpela; W. Lin; C. H. Ling; K. Masuda; Y. Matsubara; N. Miyake; M. Motomura; Y. Muraki; M. Nagaya; S. Nakamura; K. Ohnishi; T. Okumura; Y. C. Perrott; N. J. Rattenbury; To. Saito; T. Sako; D. J. Sullivan; W. L. Sweatman; P. J. Tristram

Since 1995, more than 500 exoplanets have been detected using different techniques, of which 12 were detected with gravitational microlensing. Most of these are gravitationally bound to their host stars. There is some evidence of free-floating planetary-mass objects in young star-forming regions, but these objects are limited to massive objects of 3 to 15 Jupiter masses with large uncertainties in photometric mass estimates and their abundance. Here, we report the discovery of a population of unbound or distant Jupiter-mass objects, which are almost twice () as common as main-sequence stars, based on two years of gravitational microlensing survey observations towards the Galactic Bulge. These planetary-mass objects have no host stars that can be detected within about ten astronomical units by gravitational microlensing. However, a comparison with constraints from direct imaging suggests that most of these planetary-mass objects are not bound to any host star. An abrupt change in the mass function at about one Jupiter mass favours the idea that their formation process is different from that of stars and brown dwarfs. They may have formed in proto-planetary disks and subsequently scattered into unbound or very distant orbits.


Astronomy and Astrophysics | 2013

Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars - V. Evidence for a wide age distribution and a complex MDF

Thomas Bensby; J. C. Yee; Sofia Feltzing; Jennifer A. Johnson; A. Gould; Judith G. Cohen; Martin Asplund; Jorge Melendez; Sara Lucatello; C. Han; Ian B. Thompson; Avishay Gal-Yam; A. Udalski; D. P. Bennett; I. A. Bond; W. Kohei; T. Sumi; D. Suzuki; K. Suzuki; S. Takino; P. J. Tristram; N. Yamai; A. Yonehara

Based on high-resolution spectra obtained during gravitational microlensing events we present a detailed elemental abundance analysis of 32 dwarf and subgiant stars in the Galactic bulge. Combined with the sample of 26 stars from the previous papers in this series, we now have 58 microlensed bulge dwarfs and subgiants that have been homogeneously analysed. The main characteristics of the sample and the findings that can be drawn are: (i) the metallicity distribution (MDF) is wide and spans all metallicities between [Fe/H] = −1.9 to +0.6; (ii) the dip in the MDF around solar metallicity that was apparent in our previous analysis of a smaller sample (26 microlensed stars) is no longer evident; instead it has a complex structure and indications of multiple components are starting to emerge. A tentative interpretation is that there could be different stellar populations at interplay, each with a different scale height: the thin disk, the thick disk, and a bar population; (iii) the stars with [Fe/H] ≲ −0.1 are old with ages between 10 and 12 Gyr; (iv) the metal-rich stars with [Fe/H] ≳ −0.1 show a wide variety of ages, ranging from 2 to 12 Gyr with a distribution that has a dominant peak around 4−5 Gyr and a tail towards higher ages; (v) there are indications in the [α/Fe]−[Fe/H] abundance trends that the “knee” occurs around [Fe/H] = −0.3 to −0.2, which is a slightly higher metallicity as compared to the “knee” for the local thick disk. This suggests that the chemical enrichment of the metal-poor bulge has been somewhat faster than what is observed for the local thick disk. The results from the microlensed bulge dwarf stars in combination with other findings in the literature, in particular the evidence that the bulge has cylindrical rotation, indicate that the Milky Way could be an almost pure disk galaxy. The bulge would then just be a conglomerate of the other Galactic stellar populations (thin disk, thick disk, halo, and ...?), residing together in the central parts of the Galaxy, influenced by the Galactic bar.


The Astrophysical Journal | 2004

OGLE 2003-BLG-235/MOA 2003-BLG-53: A Planetary Microlensing Event

I. A. Bond; A. Udalski; M. Jaroszyński; N. J. Rattenbury; Bohdan Paczynski; I. Soszyński; L. Wyrzykowski; M. K. Szymański; M. Kubiak; O. Szewczyk; K. Żebruń; G. Pietrzyński; F. Abe; D. P. Bennett; S. Eguchi; Y. Furuta; J. B. Hearnshaw; K. Kamiya; P. M. Kilmartin; Y. Kurata; K. Masuda; Y. Matsubara; Y. Muraki; S. Noda; T. Sako; T. Sekiguchi; D. J. Sullivan; T. Sumi; P. J. Tristram; T. Yanagisawa

We present observations of the unusual microlensing event OGLE 2003-BLG-235/MOA 2003-BLG-53. In this event, a short-duration (~7 days) low-amplitude deviation in the light curve due to a single-lens profile was observed in both the MOA (Microlensing Observations in Astrophysics) and OGLE (Optical Gravitational Lensing Experiment) survey observations. We find that the observed features of the light curve can only be reproduced using a binary microlensing model with an extreme (planetary) mass ratio of 0.0039 for the lensing system. If the lens system comprises a main-sequence primary, we infer that the secondary is a planet of about 1.5 Jupiter masses with an orbital radius of ~3 AU.


The Astrophysical Journal | 2008

A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192

D. P. Bennett; I. A. Bond; A. Udalski; T. Sumi; F. Abe; A. Fukui; K. Furusawa; J. B. Hearnshaw; S. Holderness; Y. Itow; K. Kamiya; A. Korpela; P. M. Kilmartin; W. Lin; C. H. Ling; K. Masuda; Y. Matsubara; N. Miyake; Y. Muraki; M. Nagaya; Teppei Okumura; K. Ohnishi; Y. C. Perrott; N. J. Rattenbury; T. Sako; To. Saito; Shuji Sato; L. Skuljan; D. J. Sullivan; W. L. Sweatman

We report the detection of an extrasolar planet of mass ratio q~2×10-4 in microlensing event MOA-2007-BLG-192. The best-fit microlensing model shows both the microlensing parallax and finite source effects, and these can be combined to obtain the lens masses of M=0.060+0.028-0.021 Msolar for the primary and m=3.3+4.9-1.6 M? for the planet. However, the observational coverage of the planetary deviation is sparse and incomplete, and the radius of the source was estimated without the benefit of a source star color measurement. As a result, the 2 ? limits on the mass ratio and finite source measurements are weak. Nevertheless, the microlensing parallax signal clearly favors a substellar mass planetary host, and the measurement of finite source effects in the light curve supports this conclusion. Adaptive optics images taken with the Very Large Telescope (VLT) NACO instrument are consistent with a lens star that is either a brown dwarf or a star at the bottom of the main sequence. Follow-up VLT and/or Hubble Space Telescope (HST) observations will either confirm that the primary is a brown dwarf or detect the low-mass lens star and enable a precise determination of its mass. In either case, the lens star, MOA-2007-BLG-192L, is the lowest mass primary known to have a companion with a planetary mass ratio, and the planet, MOA-2007-BLG-192Lb, is probably the lowest mass exoplanet found to date, aside from the lowest mass pulsar planet.


Astronomy and Astrophysics | 2011

Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars - IV. Two bulge populations

Thomas Bensby; Daniel Adén; Jorge Melendez; A. Gould; Sofia Feltzing; Martin Asplund; Jennifer A. Johnson; Sara Lucatello; J. C. Yee; I. Ramirez; Judith G. Cohen; Ian B. Thompson; I. A. Bond; Avishay Gal-Yam; C. Han; T. Sumi; D. Suzuki; K. Wada; N. Miyake; K. Furusawa; K. Ohmori; To. Saito; P. J. Tristram; D. P. Bennett

Based on high-resolution (R ≈ 42 000 to 48 000) and high signal-to-noise (S/N ≈ 50 to 150) spectra obtained with UVES/VLT, we present detailed elemental abundances (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba) and stellar ages for 12 new microlensed dwarf and subgiant stars in the Galactic bulge. Including previous microlensing events, the sample of homogeneously analysed bulge dwarfs has now grown to 26. The analysis is based on equivalent width measurements and standard 1-D LTE MARCS model stellar atmospheres. We also present NLTE Li abundances based on line synthesis of the ^7Li line at 670.8 nm. The results from the 26 microlensed dwarf and subgiant stars show that the bulge metallicity distribution (MDF) is double-peaked; one peak at [Fe/H] ≈ −0.6 and one at [Fe/H] ≈ + 0.3, and with a dearth of stars around solar metallicity. This is in contrast to the MDF derived from red giants in Baade’s window, which peaks at this exact value. A simple significance test shows that it is extremely unlikely to have such a gap in the microlensed dwarf star MDF if the dwarf stars are drawn from the giant star MDF. To resolve this issue we discuss several possibilities, but we can not settle on a conclusive solution for the observed differences. We further find that the metal-poor bulge dwarf stars arepredominantly old with ages greater than 10 Gyr, while the metal-rich bulge dwarf stars show a wide range of ages. The metal-poor bulge sample is very similar to the Galactic thick disk in terms of average metallicity, elemental abundance trends, and stellar ages. Speculatively, the metal-rich bulge population might be the manifestation of the inner thin disk. If so, the two bulge populations could support the recent findings, based on kinematics, that there are no signatures of a classical bulge and that the Milky Way is a pure-disk galaxy. Also, recent claims of a flat IMF in the bulge based on the MDF of giant stars may have to be revised based on the MDF and abundance trends probed by our microlensed dwarf stars.


The Astrophysical Journal | 2003

Microlensing Optical Depth toward the Galactic Bulge from Microlensing Observations in Astrophysics Group Observations during 2000 with Difference Image Analysis

T. Sumi; F. Abe; I. A. Bond; Rhea J. Dodd; J. B. Hearnshaw; M. Honda; Mareki Honma; Yukitoshi Kan-ya; P. M. Kilmartin; K. Masuda; Y. Matsubara; Y. Muraki; Takashi Nakamura; Ryoichi Nishi; S. Noda; K. Ohnishi; O. K. L. Petterson; N. J. Rattenbury; M. Reid; To. Saito; Y. Saito; H. D. Sato; M. Sekiguchi; J. Skuljan; D. J. Sullivan; Mine Takeuti; P. J. Tristram; S. Wilkinson; T. Yanagisawa; Philip Yock

We analyze the data of the gravitational microlensing survey carried out by the Microlensing Observations in Astrophysics (MOA) group during 2000 toward the Galactic bulge (GB). Our observations are designed to detect efficient high-magnification events with faint source stars and short-timescale events, by increasing the sampling rate up to ~6 times per night and using Difference Image Analysis (DIA). We detect 28 microlensing candidates in 12 GB fields corresponding to 16 deg2. We use Monte Carlo simulations to estimate our microlensing event detection efficiency, where we construct the I-band extinction map of our GB fields in order to find dereddened magnitudes. We find a systematic bias and large uncertainty in the measured value of the timescale tE,out in our simulations. They are associated with blending and unresolved sources, and are allowed for in our measurements. We compute an optical depth τ = 2.59 × 10-6 toward the GB for events with timescales 0.3 10). These events are useful for studies of extrasolar planets.


Monthly Notices of the Royal Astronomical Society | 2007

Modelling the Galactic bar using OGLE-II Red Clump Giant Stars

N. J. Rattenbury; Shude Mao; T. Sumi; M. Smith

Red clump giant (RCG) stars can be used as distance indicators to trace the mass distribution of the Galactic bar. We use RCG stars from 44 bulge fields from the OGLE-II microlensing collaboration data base to constrain analytic triaxial models for the Galactic bar. We find the bar major-axis is oriented at an angle of 24 degrees-27 degrees to the Sun-Galactic Centre line-of-sight. The ratio of semimajor and semiminor bar axis scalelengths in the Galactic plane x(0), y(0), and vertical bar scalelength z(0), is x(0) : y(0) : z(0) = 10 : 3.5 : 2.6, suggesting a slightly more prolate bar structure than the working model of Gerhard which gives the scalelength ratios as x(0) : y(0) : z(0) = 10 : 4 : 3.


The Astrophysical Journal | 2009

MICROLENSING EVENT MOA-2007-BLG-400: EXHUMING THE BURIED SIGNATURE OF A COOL, JOVIAN-MASS PLANET

Subo Dong; I. A. Bond; A. Gould; S. Kozłowski; N. Miyake; B. S. Gaudi; D. P. Bennett; F. Abe; A. C. Gilmore; A. Fukui; K. Furusawa; J. B. Hearnshaw; Y. Itow; K. Kamiya; P. M. Kilmartin; A. Korpela; W. Lin; C. H. Ling; K. Masuda; Y. Matsubara; Y. Muraki; M. Nagaya; K. Ohnishi; Teppei Okumura; Y. C. Perrott; N. J. Rattenbury; To. Saito; T. Sako; Shuji Sato; L. Skuljan

We report the detection of the cool, Jovian-mass planet MOA-2007-BLG-400Lb. The planet was detected in a high-magnification microlensing event (with peak magnification A max = 628) in which the primary lens transited the source, resulting in a dramatic smoothing of the peak of the event. The angular extent of the region of perturbation due to the planet is significantly smaller than the angular size of the source, and as a result the planetary signature is also smoothed out by the finite source size. Thus, the deviation from a single-lens fit is broad and relatively weak (approximately few percent). Nevertheless, we demonstrate that the planetary nature of the deviation can be unambiguously ascertained from the gross features of the residuals, and detailed analysis yields a fairly precise planet/star mass ratio of , in accord with the large significance () of the detection. The planet/star projected separation is subject to a strong close/wide degeneracy, leading to two indistinguishable solutions that differ in separation by a factor of ~8.5. Upper limits on flux from the lens constrain its mass to be M < 0.75 M ? (assuming that it is a main-sequence star). A Bayesian analysis that includes all available observational constraints indicates a primary in the Galactic bulge with a mass of ~0.2-0.5 M ? and thus a planet mass of ~0.5-1.3 M Jup. The separation and equilibrium temperature are ~5.3-9.7 AU (~0.6-1.1 AU) and ~34 K (~103 K) for the wide (close) solution. If the primary is a main-sequence star, follow-up observations would enable the detection of its light and so a measurement of its mass and distance.

Collaboration


Dive into the T. Sumi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. P. Bennett

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge