Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Tachibana is active.

Publication


Featured researches published by T. Tachibana.


Physical Review Letters | 2013

Time-Resolved Measurement of Interatomic Coulombic Decay in Ne2

Kirsten Schnorr; Arne Senftleben; M. Kurka; A. Rudenko; Lutz Foucar; Georg H. Schmid; Alexander Broska; Thomas Pfeifer; Kristina Meyer; Denis Anielski; Rebecca Boll; Daniel Rolles; Matthias Kübel; Matthias F. Kling; Y. H. Jiang; S. Mondal; T. Tachibana; K. Ueda; T. Marchenko; Marc Simon; G. Brenner; Rolf Treusch; S. Scheit; V. Averbukh; J. Ullrich; C. D. Schröter; R. Moshammer

The lifetime of interatomic Coulombic decay (ICD) [L. S. Cederbaum et al., Phys. Rev. Lett. 79, 4778 (1997)] in Ne2 is determined via an extreme ultraviolet pump-probe experiment at the Free-Electron Laser in Hamburg. The pump pulse creates a 2s inner-shell vacancy in one of the two Ne atoms, whereupon the ionized dimer undergoes ICD resulting in a repulsive Ne+(2p(-1))-Ne+(2p(-1)) state, which is probed with a second pulse, removing a further electron. The yield of coincident Ne+-Ne2+ pairs is recorded as a function of the pump-probe delay, allowing us to deduce the ICD lifetime of the Ne2(+)(2s(-1)) state to be (150±50)  fs, in agreement with quantum calculations.


Physical Review Letters | 2013

Deep Inner-Shell Multiphoton Ionization by Intense X-Ray Free-Electron Laser Pulses

H. Fukuzawa; Sang-Kil Son; K. Motomura; S. Mondal; K. Nagaya; S. Wada; XiaoJing Liu; R. Feifel; T. Tachibana; Yuta Ito; M. Kimura; T. Sakai; K. Matsunami; H. Hayashita; J. Kajikawa; Per Johnsson; M. Siano; Edwin Kukk; Benedikt Rudek; Benjamin Erk; Lutz Foucar; E. Robert; Catalin Miron; Kensuke Tono; Yuichi Inubushi; Takaki Hatsui; Makina Yabashi; Makoto Yao; Robin Santra; K. Ueda

We have investigated multiphoton multiple ionization dynamics of xenon atoms using a new x-ray free-electron laser facility, SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan, and identified that Xe(n+) with n up to 26 is produced at a photon energy of 5.5 keV. The observed high charge states (n≥24) are produced via five-photon absorption, evidencing the occurrence of multiphoton absorption involving deep inner shells. A newly developed theoretical model, which shows good agreement with the experiment, elucidates the complex pathways of sequential electronic decay cascades accessible in heavy atoms. The present study of heavy-atom ionization dynamics in high-intensity hard-x-ray pulses makes a step forward towards molecular structure determination with x-ray free-electron lasers.


Scientific Reports | 2015

Nanoplasma Formation by High Intensity Hard X-rays.

T. Tachibana; Zoltan Jurek; H. Fukuzawa; K. Motomura; K. Nagaya; S. Wada; Per Johnsson; M. Siano; S. Mondal; Yuta Ito; M. Kimura; T. Sakai; K. Matsunami; H. Hayashita; J. Kajikawa; E. Robert; Catalin Miron; Raimund Feifel; J. P. Marangos; Kensuke Tono; Yuichi Inubushi; Makina Yabashi; Sang-Kil Son; Beata Ziaja; Makoto Yao; Robin Santra; K. Ueda

Using electron spectroscopy, we have investigated nanoplasma formation from noble gas clusters exposed to high-intensity hard-x-ray pulses at ~5 keV. Our experiment was carried out at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility in Japan. Dedicated theoretical simulations were performed with the molecular dynamics tool XMDYN. We found that in this unprecedented wavelength regime nanoplasma formation is a highly indirect process. In the argon clusters investigated, nanoplasma is mainly formed through secondary electron cascading initiated by slow Auger electrons. Energy is distributed within the sample entirely through Auger processes and secondary electron cascading following photoabsorption, as in the hard x-ray regime there is no direct energy transfer from the field to the plasma. This plasma formation mechanism is specific to the hard-x-ray regime and may, thus, also be important for XFEL-based molecular imaging studies. In xenon clusters, photo- and Auger electrons contribute more significantly to the nanoplasma formation. Good agreement between experiment and simulations validates our modelling approach. This has wide-ranging implications for our ability to quantitatively predict the behavior of complex molecular systems irradiated by high-intensity hard x-rays.


Journal of Physics B | 2013

Sequential multiphoton multiple ionization of atomic argon and xenon irradiated by x-ray free-electron laser pulses from SACLA

K. Motomura; H. Fukuzawa; S-K Son; S. Mondal; T. Tachibana; Yuta Ito; M. Kimura; K. Nagaya; T. Sakai; K. Matsunami; S. Wada; H. Hayashita; J. Kajikawa; R. Feifel; Per Johnsson; M. Siano; Edwin Kukk; Benedikt Rudek; Benjamin Erk; Lutz Foucar; E. Robert; Catalin Miron; Kensuke Tono; Yuichi Inubushi; Takaki Hatsui; Makina Yabashi; Makoto Yao; Robin Santra; K. Ueda

We have investigated multiphoton multiple ionization of argon and xenon atoms at 5 keV using a new x-ray free electron laser (XFEL) facility, the SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan. The experimental results are compared with the new theoretical results presented here. The absolute fluence of the XFEL pulse has been determined with the help of the calculations utilizing two-photon processes in the argon atom. The high charge states up to +22 observed for Xe in comparison with the calculations point to the occurrence of sequential L-shell multiphoton absorption and of resonance-enabled x-ray multiple ionization.


Journal of Physical Chemistry Letters | 2015

Charge and Nuclear Dynamics Induced by Deep Inner-Shell Multiphoton Ionization of CH3I Molecules by Intense X-ray Free-Electron Laser Pulses

K. Motomura; Edwin Kukk; H. Fukuzawa; S. Wada; K. Nagaya; Satoshi Ohmura; S. Mondal; T. Tachibana; Yuta Ito; Ryosuke Koga; T. Sakai; K. Matsunami; Artem Rudenko; Christophe Nicolas; XiaoJing Liu; Catalin Miron; Yizhu Zhang; Y. H. Jiang; Jianhui Chen; Mailam Anand; Dong Eon Kim; Kensuke Tono; Makina Yabashi; Makoto Yao; K. Ueda

In recent years, free-electron lasers operating in the true X-ray regime have opened up access to the femtosecond-scale dynamics induced by deep inner-shell ionization. We have investigated charge creation and transfer dynamics in the context of molecular Coulomb explosion of a single molecule, exposed to sequential deep inner-shell ionization within an ultrashort (10 fs) X-ray pulse. The target molecule was CH3I, methane sensitized to X-rays by halogenization with a heavy element, iodine. Time-of-flight ion spectroscopy and coincident ion analysis was employed to investigate, via the properties of the atomic fragments, single-molecule charge states of up to +22. Experimental findings have been compared with a parametric model of simultaneous Coulomb explosion and charge transfer in the molecule. The study demonstrates that including realistic charge dynamics is imperative when molecular Coulomb explosion experiments using short-pulse facilities are performed.


Journal of Physical Chemistry Letters | 2013

Controlling Low-Energy Electron Emission via Resonant-Auger-Induced Interatomic Coulombic Decay.

M. Kimura; H. Fukuzawa; T. Tachibana; Yuta Ito; S. Mondal; M. Okunishi; M. Schöffler; Joshua Williams; Y. H. Jiang; Y. Tamenori; Norio Saito; K. Ueda

We have investigated interatomic Coulombic decay (ICD) after resonant Auger decay in Ar2, ArKr, and ArXe following 2p3/2 → 4s and 2p3/2 → 3d excitations in Ar, using momentum-resolved electron-ion-ion coincidence. The results illustrate that ICD induced by the resonant Auger decay is a well-controlled way of producing energy-selected slow electrons at a specific site.


Journal of Physics B | 2016

Electron spectroscopy of rare-gas clusters irradiated by x-ray free-electron laser pulses from SACLA

H. Fukuzawa; T. Tachibana; K. Motomura; Weiqing Xu; K. Nagaya; S. Wada; Per Johnsson; M. Siano; S. Mondal; Yuta Ito; M. Kimura; T. Sakai; K. Matsunami; H. Hayashita; J. Kajikawa; E. Robert; Catalin Miron; Raimund Feifel; Jonathan P. Marangos; Kensuke Tono; Yuichi Inubushi; Makina Yabashi; Makoto Yao; K. Ueda

We have measured electron energy spectra and asymmetry parameters of Ar clusters and Xe clusters illuminated by intense x-rays at 5 and 5.5 keV. A velocity map imaging spectrometer was developed for this purpose and employed at an x-ray free-electron laser facility, SACLA in Japan. The cluster size dependence and the peak fluence dependence of the electron spectra and asymmetry parameters are discussed.


Physical Review Letters | 2016

Slow Interatomic Coulombic Decay of Multiply Excited Neon Clusters

D. Iablonskyi; K. Nagaya; H. Fukuzawa; K. Motomura; Yoshiaki Kumagai; S. Mondal; T. Tachibana; Tsukasa Takanashi; T. Nishiyama; K. Matsunami; Per Johnsson; P. Piseri; Giuseppe Sansone; Antoine Dubrouil; Maurizio Reduzzi; Paolo Carpeggiani; Caterina Vozzi; Michele Devetta; M. Negro; Francesca Calegari; Andrea Trabattoni; M. C. Castrovilli; Davide Faccialà; Y. Ovcharenko; T. Möller; M. Mudrich; F. Stienkemeier; M. Coreno; Michele Alagia; B. Schütte

Ne clusters (∼5000  atoms) were resonantly excited (2p→3s) by intense free electron laser (FEL) radiation at FERMI. Such multiply excited clusters can decay nonradiatively via energy exchange between at least two neighboring excited atoms. Benefiting from the precise tunability and narrow bandwidth of seeded FEL radiation, specific sites of the Ne clusters were probed. We found that the relaxation of cluster surface atoms proceeds via a sequence of interatomic or intermolecular Coulombic decay (ICD) processes while ICD of bulk atoms is additionally affected by the surrounding excited medium via inelastic electron scattering. For both cases, cluster excitations relax to atomic states prior to ICD, showing that this kind of ICD is rather slow (picosecond range). Controlling the average number of excitations per cluster via the FEL intensity allows a coarse tuning of the ICD rate.


Nature Communications | 2016

Interatomic Coulombic decay cascades in multiply excited neon clusters

K. Nagaya; D. Iablonskyi; Nikolay V. Golubev; K. Matsunami; H. Fukuzawa; K. Motomura; T. Nishiyama; T. Sakai; T. Tachibana; S. Mondal; S. Wada; Kevin C. Prince; C. Callegari; Catalin Miron; Norio Saito; Makina Yabashi; Ph. V. Demekhin; Lorenz S. Cederbaum; Alexander I. Kuleff; Makoto Yao; K. Ueda

In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation.


Journal of Physics B | 2013

Photoelectron angular distributions in infrared one-photon and two-photon ionization of FEL-pumped Rydberg states of helium

S. Mondal; H. Fukuzawa; K. Motomura; T. Tachibana; K. Nagaya; T. Sakai; K. Matsunami; S. Yase; Makoto Yao; S. Wada; H. Hayashita; Norio Saito; C. Callegari; Kevin C. Prince; P O'Keeffe; P. Bolognesi; L. Avaldi; Catalin Miron; Mitsuru Nagasono; Tadashi Togashi; Makina Yabashi; Ken Ishikawa; I P Sazhina; A. K. Kazansky; N M Kabachnik; K. Ueda

The photoelectron angular distributions (PADs) have been investigated for infrared (IR) ionization of He atoms excited to Rydberg states by extreme ultraviolet free-electron laser pulses. The experiment was carried out with two pulses which do not overlap in time. Depending on the intensity of the IR pulses, one IR photon ionization or additionally two-photon above-threshold ionization is observed. For low IR intensity, the PAD is well described by a contribution of s and d partial waves in accordance with early experiments. At high IR intensity, the PAD for two IR photon ionization clearly shows the contribution of higher partial waves. The experimental data are compared with the results of theoretical calculations based on solving the time-dependent Schrodinger equation.

Collaboration


Dive into the T. Tachibana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Wada

Hiroshima University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge