T. Tuch
Leibniz Association
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. Tuch.
Science of The Total Environment | 2003
Josef Cyrys; Matthias Stölzel; Joachim Heinrich; Wolfgang G. Kreyling; N. Menzel; K. Wittmaack; T. Tuch; H.-Erich Wichmann
We present the first results of a source apportionment for the urban aerosol in Erfurt, Germany, for the period 1995-1998. The analysis is based on data of particle number concentrations (0.01-2.5 microm; mean 1.8 x 10(4) cm(-3), continuous), the concentration of the ambient gases SO(2), NO, NO(2) and CO (continuous), particle mass less than 2.5 microm (PM(2.5)) and less than 10 microm (PM(10)) (Harvard Impactor sampling, mean PM(2.5) 26.3 micro/m(3), mean PM(10) 38.2 microg/m(3)) and the size fractionated concentrations of 19 elements (impactor sampling 0.05-1.62 microm, PIXE analysis). We determined: (a) the correlations between (i) the 1- and 24-h average concentrations of the gaseous pollutants and the particle number as well as the particle mass concentration and (ii) between the 24-h elemental concentrations; (b) Crustal Enrichment Factors for the PIXE elements using Si as reference element; and (c) the diurnal pattern of the measured pollutants on weekdays and on weekends. The highly correlated PIXE elements Si, Al, Ti and Ca having low enrichment factors were identified as soil elements. The strong correlation of particle number concentrations with NO, which is considered to be typically emitted by traffic, and the striking similarity of their diurnal variation suggest that a sizable fraction of the particle number concentration is associated with emission from vehicles. Besides NO and particle number concentrations other pollutants such as NO(2), CO as well as the elements Zn and Cu were strongly correlated and appear to reflect motor vehicle traffic. Sulfur could be a tracer for coal combustion, however, it was not correlated with any of the quoted elements. Highly correlated elements V and Ni have similar enrichment factors and are considered as tracers for oil combustion.
Geophysical Research Letters | 2005
B. Wehner; Tuukka Petäjä; M. Boy; C. Engler; W. Birmili; T. Tuch; A. Wiedensohler; Markku Kulmala
[1] The formation of atmospheric aerosol particles (homogeneous nucleation, forming of stable clusters ∼1 nm in size), their subsequent growth to detectable sizes (>3 nm), and to the size of cloud condensation nuclei, remains one of the least understood atmospheric processes upon which global climate change critically depends. However, a quantitative model explanation for the growth of freshly formed aerosols has been missing. In this study, we present observations explaining the nucleation mode (3-25 nm) growth. Aerosol particles typically grow from 3 nm to 60-70 nm during a day, while their non-volatile cores grow by 10-20 nm as well. The total particle growth rate is 2-8 nm/h while the non-volatile core material can explain 20-40%. According to our results, sulfuric acid can explain the remainder of the growth, until the particle diameter is around 10-20 nm. After that secondary organic compounds significantly take part in growth process.
Geophysical Research Letters | 2004
B. Wehner; A. Wiedensohler; T. Tuch; Z. J. Wu; Min Hu; J. Slanina; C. S. Kiang
Continuous measurements of aerosol number size distributions from 3 nm to 10 μm have been first performed within the city area of Beijing since March 2004. Size distributions of the first 45 measurement days (March 05 to April 18, 2004) were investigated in terms of their high variability. Two dust storm events were observed indicated by high number concentrations greater than 1 μm and mass concentrations around 1 mg m -3 . Continental highly polluted air was observed during 12 days indicated by a number peak in the accumulation mode range, and submicrometer volume concentrations above 150 μm 3 cm -3 were observed. Newly formed particles with more than 100,000 cm -3 were observed on 25 days when the particle surface area concentration drops below a critical value (100-2000 μm 2 cm -3 ) because of clean air from the north. Measurements show only a slight growth (∼1 nm h -1 ) of the particles indicating that they are produced within the city area of Beijing.
Environmental Health Perspectives | 2010
Arne Marian Leitte; Uwe Schlink; Olf Herbarth; Alfred Wiedensohler; Xiaochuan Pan; Min Hu; Matthia Richter; B. Wehner; T. Tuch; Zhijun Wu; Minjuan Yang; Liqun Liu; Susanne Breitner; Josef Cyrys; Annette Peters; H.-Erich Wichmann; Ulrich Franck
Background The link between concentrations of particulate matter (PM) and respiratory morbidity has been investigated in numerous studies. Objectives The aim of this study was to analyze the role of different particle size fractions with respect to respiratory health in Beijing, China. Methods Data on particle size distributions from 3 nm to 1 μm; PM10 (PM ≤ 10 μm), nitrogen dioxide (NO2), and sulfur dioxide concentrations; and meteorologic variables were collected daily from March 2004 to December 2006. Concurrently, daily counts of emergency room visits (ERV) for respiratory diseases were obtained from the Peking University Third Hospital. We estimated pollutant effects in single- and two-pollutant generalized additive models, controlling for meteorologic and other time-varying covariates. Time-delayed associations were estimated using polynomial distributed lag, cumulative effects, and single lag models. Results Associations of respiratory ERV with NO2 concentrations and 100–1,000 nm particle number or surface area concentrations were of similar magnitude—that is, approximately 5% increase in respiratory ERV with an interquartile range increase in air pollution concentration. In general, particles < 50 nm were not positively associated with ERV, whereas particles 50–100 nm were adversely associated with respiratory ERV, both being fractions of ultrafine particles. Effect estimates from two-pollutant models were most consistent for NO2. Conclusions Present levels of air pollution in Beijing were adversely associated with respiratory ERV. NO2 concentrations seemed to be a better surrogate for evaluating overall respiratory health effects of ambient air pollution than PM10 or particle number concentrations in Beijing.
Tellus B | 2004
Jost Heintzenberg; W. Birmili; Alfred Wiedensohler; A. Nowak; T. Tuch
Submicrometre dry number size distributions from four marine and one continental aerosol experiment were evaluatedjointly in the present study. In the marine experiments only data with back trajectories of at least 120 h without landcontact were used to minimize continental contamination. Log-normal functions were fitted to the size distributions.Basic statistics of the marine aerosol indicate a closed character of the size distribution at the lower size limit as opposedto an open character for corresponding continental data. Together with the infrequent occurrences of marine particlesbelow20 nmthis finding supports hypotheses and model results suggesting lowprobabilities of homogeneous nucleationin the marine boundary layer. The variability of submicrometre marine number concentrations was parametrized witha bimodal log-normal function that quantifies the probability of finding different number concentrations about a givenmedian value. Together with a four-modal log-normal approximation of the submicrometre marine size distributionitself, this model allows a statistical representation of the marine aerosol that facilitates comparison of experiments andvalidation of aerosol models. Autocorrelation at the one fixed marine site with a minimum of interruptions in timesseriesrevealed a strong size dependency of persistence in particle number concentration with the shortest persistenceat the smallest sizes. Interestingly, in the marine aerosol (at Cape Grim) persistence exhibits a size dependency thatlargely matches the modes in dg0, i.e. near the most frequent geometric mean diameters number concentrations aremost persistent. Over the continent, persistence of particle numbers is strongly constrained by diurnal meteorologicalprocesses and aerosol dynamics. Thus, no strong modal structure appears in the size-dependent persistence at Melpitz.As with the aerosol variability, marine aerosol processes in models of aerosol dynamics can be tested with these findings.
Science of The Total Environment | 2001
Josef Cyrys; Gunnar Dietrich; Wolfgang G. Kreyling; T. Tuch; Joachim Heinrich
A comparison, based on the regression of 32 daily mean PM25 aerosol loadings determined by a tapered element oscillating microbalance (TEOM) and by a Harvard impactor (HI), is reported for the ambient aerosol of Erfurt (Germany). The PM2.5 concentrations measured by the TEOM were systematically lower then those obtained by the HI. The ratio of the means TEOM/HI was 0.74 and the regression equation is TEOM = 0.69 x HI + 0.071. This result is consistent with reports elsewhere suggesting that semi-volatile aerosol material is lost from the heated sample filter on the TEOM. To verify this assertion, a heating system was developed for the HI which was able to keep the HI sample filter at 50+/-1 degrees C. After the implementation of this heating system, no systematically differences were observed between the TEOM and the heated HI system. The ratio of means was 1.06 and the regression equation TEOM = 1.10 x HI - 0.668. Because the measured levels of ammonium nitrate were very low in Erfurt, we concluded that other compounds like semi-volatile organics were responsible for the loss of particulate material at 50 degrees C.
Journal of Environmental Monitoring | 2005
Jeroen J. de Hartog; Gerard Hoek; A. Mirme; T. Tuch; Gerard Kos; Harry ten Brink; Bert Brunekreef; Josef Cyrys; Joachim Heinrich; Mike Pitz; Timo Lanki; Marko Vallius; Juha Pekkanen; Wolfgang G. Kreyling
Evidence on the correlation between particle mass and (ultrafine) particle number concentrations is limited. Winter- and spring-time measurements of urban background air pollution were performed in Amsterdam (The Netherlands), Erfurt (Germany) and Helsinki (Finland), within the framework of the EU funded ULTRA study. Daily average concentrations of ambient particulate matter with a 50% cut off of 2.5 microm (PM2.5), total particle number concentrations and particle number concentrations in different size classes were collected at fixed monitoring sites. The aim of this paper is to assess differences in particle concentrations in several size classes across cities, the correlation between different particle fractions and to assess the differential impact of meteorological factors on their concentrations. The medians of ultrafine particle number concentrations were similar across the three cities (range 15.1 x 10(3)-18.3 x 10(3) counts cm(-3)). Within the ultrafine particle fraction, the sub fraction (10-30 nm) made a higher contribution to particle number concentrations in Erfurt than in Helsinki and Amsterdam. Larger differences across the cities were found for PM2.5(range 11-17 microg m(-3)). PM2.5 and ultrafine particle concentrations were weakly (Amsterdam, Helsinki) to moderately (Erfurt) correlated. The inconsistent correlation for PM2.5 and ultrafine particle concentrations between the three cities was partly explained by the larger impact of more local sources from the city on ultrafine particle concentrations than on PM2.5, suggesting that the upwind or downwind location of the measuring site in regard to potential particle sources has to be considered. Also, relationship with wind direction and meteorological data differed, suggesting that particle number and particle mass are two separate indicators of airborne particulate matter. Both decreased with increasing wind speed, but ultrafine particle number counts consistently decreased with increasing relative humidity, whereas PM2.5 increased with increasing barometric pressure. Within the ultrafine particle mode, nucleation mode (10-30 nm) and Aitken mode (30-100 nm) had distinctly different relationships with accumulation mode particles and weather conditions. Since the composition of these particle fractions also differs, it is of interest to test in future epidemiological studies whether they have different health effects.
Tellus B | 2007
B. Wehner; H. Siebert; Frank Stratmann; T. Tuch; Alfred Wiedensohler; Tuukka Petäjä; Miikka Dal Maso; Markku Kulmala
During the SATURN campaign 2002, new particle formation, i.e. the occurrence of ultrafine particles was investigated simultaneously at four ground-based measurement sites. The maximum distance between the sites was 50 km. Additionally, vertical profiles of aerosol particles from 5–10 nm have been measured by a tethered-balloonborne system at one of the sites. In general, two different scenarios have been found: (i) new particle formation was measured at all sites nearly in parallel with subsequent particle growth (homogeneous case) and (ii) new particle formation was observed at one to three sites irregularly (inhomogeneous case) where subsequent particle growth was often interrupted. The homogeneous case was connected with stable synoptical conditions, i.e. the region was influenced by a high pressure system. Here, the horizontal extent of the phenomenon has been estimated to be 400 km at maximum. In the vertical dimension, the ultrafine particles are well mixed within the entire boundary layer. In the inhomogeneous case the new particle formation depends mainly on the incoming solar radiation and was often interrupted due the occurrence of clouds. Thus, single point measurements are not representative for a larger region in that case.
Journal of Exposure Science and Environmental Epidemiology | 2006
T. Tuch; Olf Herbarth; Ulrich Franck; Annette Peters; B. Wehner; Alfred Wiedensohler; Jost Heintzenberg
Ambient aerosol has been identified as a major pollutant affecting human health. Standards to reduce particles mass concentrations have therefore been established in many countries. Recent studies suggest that the number concentration of aerosol particles, which is dominated by the ultrafine size range smaller than 100 nm in diameter, may be independently associated with health effects. Currently, epidemiological evidence for such effects is conflicting. We have measured aerosol size distributions at two stations (urban background, street canyon) located at a distance of 1.5 km for a time period of 1 year. Number concentrations and particle size distributions at both sites were significantly different. Short-term correlation between the two sites was weak for individual measurements of number concentrations and size bins of ultrafine particles (0.19–0.46). Correlation coefficients for hourly and daily averages in selected size ranges ranged from 0.35 to 0.46. On the other hand, the correlation coefficient for daily average particle volume concentrations was found to be 0.67. About 10% to 20% of the population of European cities lives close to roads with traffic densities comparable to our site. The underestimation of the exposure of a considerable part of a study population may therefore severely influence the outcome of epidemiological studies focused on health effects associated with ultrafine particles. A single background measurement site may not be sufficient for exposure assessment in these studies without taking spatial and temporal variability into account.
Aerosol Science and Technology | 2002
A. Mirme; Wolfgang G. Kreyling; Andrey Khlystov; Harry ten Brink; Juhani Ruuskanen; T. Tuch; Juha Pekkanen
Three aerosol spectrometers measuring the number concentration distribution of particles in the diameter range 0.01 to 2.5 w m were compared by running them side-by-side for 385 h under ambient air conditions in Erfurt, Germany in October 1997. From the spectral data the measured hourly number concentrations in 3 size fractions, the ultrafine fraction (0.01-0.1 w m), the accumulation fraction (0.1-0.5 w m), and the coarse fraction (0.5-2.5 w m), were analyzed. The systematic component of the difference between the instruments was assessed as the geometric mean of the ratio of the measured concentrations (GMR) and the random component as the geometric standard deviation of this ratio (GSR). Previous statistical methods to compare instruments were developed further. A nonlinear multivariate regression method was used to compare the aerosol distribution consisting of several size fractions. Also, the imprecision of the individual instruments (GSI) was estimated. Comparing the instruments within the ultrafine and accumulation fractions, both the GMRs and GSRs ranged between 1.06 and 1.23 and correlations were above 0.98. In the coarse fraction, the GMR of the number concentrations ranged between 0.25 and 4.19, the GSRs between 1.81 and 2.61, and the correlations between 0.72 and 0.85. The GSIs of the instruments were below 1.2 for all fractions but the coarse fraction. To explore possible differences in the classification of particles into the accumulation and coarse fractions, coarse fractions were regressed with the coarse and the accumulation fractions of the other instruments. Using a conversion based on this regression, the GSRs between instruments were minimized to 1.35 and the GSI to below 1.3. In conclusion, the aerosol spectrometers were in good agreement in the ultrafine and accumulation size fractions. The differences in the measured number concentrations in the coarse fraction were effectively corrected by using a regression method taking into account also the concentration in accumulation fraction, which suggests possible differences in particle sizing at 0.5 w m.