T. van Noije
Royal Netherlands Meteorological Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. van Noije.
Journal of Geophysical Research | 2006
David S. Stevenson; F. Dentener; Martin G. Schultz; K. Ellingsen; T. van Noije; Oliver Wild; Guang Zeng; M. Amann; C. S. Atherton; N. Bell; D. Bergmann; Isabelle Bey; T. Butler; J. Cofala; W. J. Collins; R. G. Derwent; Ruth M. Doherty; J. Drevet; Henk Eskes; Arlene M. Fiore; M. Gauss; D. A. Hauglustaine; Larry W. Horowitz; Ivar S. A. Isaksen; M. Krol; Jean-Francois Lamarque; M. G. Lawrence; V. Montanaro; Jean-François Müller; G. Pitari
Global tropospheric ozone distributions, budgets, and radiative forcings from an ensemble of 26 state-of-the-art atmospheric chemistry models have been intercompared and synthesized as part of a wider study into both the air quality and climate roles of ozone. Results from three 2030 emissions scenarios, broadly representing optimistic, likely, and pessimistic options, are compared to a base year 2000 simulation. This base case realistically represents the current global distribution of tropospheric ozone. A further set of simulations considers the influence of climate change over the same time period by forcing the central emissions scenario with a surface warming of around 0.7K. The use of a large multimodel ensemble allows us to identify key areas of uncertainty and improves the robustness of the results. Ensemble mean changes in tropospheric ozone burden between 2000 and 2030 for the 3 scenarios range from a 5% decrease, through a 6% increase, to a 15% increase. The intermodel uncertainty (±1 standard deviation) associated with these values is about ±25%. Model outliers have no significant influence on the ensemble mean results. Combining ozone and methane changes, the three scenarios produce radiative forcings of -50, 180, and 300 mW m-2, compared to a CO 2 forcing over the same time period of 800-1100 mW m-2. These values indicate the importance of air pollution emissions in short- to medium-term climate forcing and the potential for stringent/lax control measures to improve/worsen future climate forcing. The model sensitivity of ozone to imposed climate change varies between models but modulates zonal mean mixing ratios by ±5 ppbv via a variety of feedback mechanisms, in particular those involving water vapor and stratosphere-troposphere exchange. This level of climate change also reduces the methane lifetime by around 4%. The ensemble mean year 2000 tropospheric ozone budget indicates chemical production, chemical destruction, dry deposition and stratospheric input fluxes of 5100, 4650, 1000 and 550 Tg(O 3 ) yr-1, respectively. These values are significantly different to the mean budget documented by the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report (TAR). The mean ozone burden (340 Tg(O 3 )) is 10% larger than the IPCC TAR estimate, while the mean ozone lifetime (22 days) is 10% shorter. Results from individual models show a correlation between ozone burden and lifetime, and each models ozone burden and lifetime respond in similar ways across the emissions scenarios. The response to climate change is much less consistent. Models show more variability in the tropics compared to midlatitudes. Some of the most uncertain areas of the models include treatments of deep tropical convection, including lightning NO x production; isoprene emissions from vegetation and isoprenes degradation chemistry; stratosphere-troposphere exchange; biomass burning; and water vapor concentrations. Copyright 2006 by the American Geophysical Union.
Global Biogeochemical Cycles | 2006
Frank Dentener; J. Drevet; Jean-Francois Lamarque; Isabelle Bey; B. Eickhout; Arlene M. Fiore; D. A. Hauglustaine; Larry W. Horowitz; M. Krol; U. C. Kulshrestha; M. G. Lawrence; C. Galy-Lacaux; Sebastian Rast; Drew T. Shindell; David S. Stevenson; T. van Noije; C. S. Atherton; N. Bell; D. Bergman; T. Butler; J. Cofala; B. Collins; Ruth M. Doherty; K. Ellingsen; James N. Galloway; M. Gauss; V. Montanaro; J.-F. Müller; G. Pitari; Jose M. Rodriguez
We use 23 atmospheric chemistry transport models to calculate current and future (2030) deposition of reactive nitrogen (NOy, NHx) and sulfate (SOx) to land and ocean surfaces. The models are driven by three emission scenarios: (1) current air quality legislation (CLE); (2) an optimistic case of the maximum emissions reductions currently technologically feasible (MFR); and (3) the contrasting pessimistic IPCC SRES A2 scenario. An extensive evaluation of the present-day deposition using nearly all information on wet deposition available worldwide shows a good agreement with observations in Europe and North America, where 60–70% of the model-calculated wet deposition rates agree to within ±50% with quality-controlled measurements. Models systematically overestimate NHx deposition in South Asia, and underestimate NOy deposition in East Asia. We show that there are substantial differences among models for the removal mechanisms of NOy, NHx, and SOx, leading to ±1 σ variance in total deposition fluxes of about 30% in the anthropogenic emissions regions, and up to a factor of 2 outside. In all cases the mean model constructed from the ensemble calculations is among the best when comparing to measurements. Currently, 36–51% of all NOy, NHx, and SOx is deposited over the ocean, and 50–80% of the fraction of deposition on land falls on natural (nonagricultural) vegetation. Currently, 11% of the worlds natural vegetation receives nitrogen deposition in excess of the “critical load” threshold of 1000 mg(N) m−2 yr−1. The regions most affected are the United States (20% of vegetation), western Europe (30%), eastern Europe (80%), South Asia (60%), East Asia (40%), southeast Asia (30%), and Japan (50%). Future deposition fluxes are mainly driven by changes in emissions, and less importantly by changes in atmospheric chemistry and climate. The global fraction of vegetation exposed to nitrogen loads in excess of 1000 mg(N) m−2 yr−1 increases globally to 17% for CLE and 25% for A2. In MFR, the reductions in NOy are offset by further increases for NHx deposition. The regions most affected by exceedingly high nitrogen loads for CLE and A2 are Europe and Asia, but also parts of Africa.
Journal of Geophysical Research | 2008
Henk Eskes; K. F. Boersma; T. van Noije; M. Van Roozendael; I. De Smedt; D. H. M. U. Peters; E. W. Meijer
[1] For the period 1996–2006, global distributions of tropospheric nitrogen dioxide (NO2) have been derived from radiances measured with the satellite instruments GOME (Global Ozone Monitoring Experiment) and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY). A statistical analysis is applied to derive trends and seasonal variability for this period on a global scale. The time series of the monthly NO2 columns for these ten years have been fitted with a linear function superposed on an annual seasonal cycle on a grid with a spatial resolution of 1 by 1 .W e see significant reductions (up to 7% per year) in NO2 in Europe and parts of the eastern United States, and a strong increase in Asia, most particularly in China (up to 29% per year) but also in Iran and Russia. By comparing the data with the cloud information derived from the same satellite observations, the contribution of lightning to the total column of NO2 is estimated. The estimated NO2 from lightning is, especially in the tropics, in good agreement with lightning flash rate observations from space. The satellite observed seasonal variability of NO2 generally correlates well with independent observations and estimates of the seasonal cycle of specific NOx sources. Source categories considered are anthropogenic (fossil fuel and biofuel), biomass burning, soil emissions and lightning. Using the characteristics of the seasonal variability of these source categories, the dominant source of NOx emissions has been identified on a global scale and on a 1 by 1 grid.
Journal of Geophysical Research | 2006
Drew T. Shindell; G. Faluvegi; David S. Stevenson; M. Krol; Louisa Kent Emmons; Jean-Francois Lamarque; G. Pétron; F. Dentener; K. Ellingsen; Martin G. Schultz; Oliver Wild; M. Amann; C. S. Atherton; D. Bergmann; I. Bey; T. Butler; J. Cofala; W. J. Collins; R. G. Derwent; Ruth M. Doherty; J. Drevet; Henk Eskes; Arlene M. Fiore; M. Gauss; D. A. Hauglustaine; Larry W. Horowitz; Ivar S. A. Isaksen; M. G. Lawrence; V. Montanaro; Jean-François Müller
We analyze present-day and future carbon monoxide (CO) simulations in 26 state-of-the-art atmospheric chemistry models run to study future air quality and climate change. In comparison with near-global satellite observations from the MOPITT instrument and local surface measurements, the models show large underestimates of Northern Hemisphere (NH) extratropical CO, while typically performing reasonably well elsewhere. The results suggest that year-round emissions, probably from fossil fuel burning in east Asia and seasonal biomass burning emissions in south-central Africa, are greatly underestimated in current inventories such as IIASA and EDGAR3.2. Variability among models is large, likely resulting primarily from intermodel differences in representations and emissions of nonmethane volatile organic compounds (NMVOCs) and in hydrologic cycles, which affect OH and soluble hydrocarbon intermediates. Global mean projections of the 2030 CO response to emissions changes are quite robust. Global mean midtropospheric (500 hPa) CO increases by 12.6 ± 3.5 ppbv (16%) for the high-emissions (A2) scenario, by 1.7 ± 1.8 ppbv (2%) for the midrange (CLE) scenario, and decreases by 8.1 ± 2.3 ppbv (11%) for the low-emissions (MFR) scenario. Projected 2030 climate changes decrease global 500 hPa CO by 1.4 ± 1.4 ppbv. Local changes can be much larger. In response to climate change, substantial effects are seen in the tropics, but intermodel variability is quite large. The regional CO responses to emissions changes are robust across models, however. These range from decreases of 10–20 ppbv over much of the industrialized NH for the CLE scenario to CO increases worldwide and year-round under A2, with the largest changes over central Africa (20–30 ppbv), southern Brazil (20–35 ppbv) and south and east Asia (30–70 ppbv). The trajectory of future emissions thus has the potential to profoundly affect air quality over most of the worlds populated areas.
Journal of Climate | 2014
M. Weiss; Paul A. Miller; B. J. J. M. van den Hurk; T. van Noije; S. Ştefănescu; Reindert J. Haarsma; L.H. van Ulft; Wilco Hazeleger; P. Le Sager; Benjamin Smith; Guy Schurgers
AbstractIn this study, the impact of coupling and initializing the leaf area index from the dynamic vegetation model Lund–Potsdam–Jena General Ecosystem Simulator (LPJ-GUESS) is analyzed on skill of decadal predictions in the fully coupled atmosphere–land–ocean–sea ice model, the European Consortium Earth System Model (EC-Earth). Similar to the impact of initializing the model with the observed oceanic state, initializing the leaf area index (LAI) fields obtained from an offline LPJ-GUESS simulation forced by the observed atmospheric state leads to a systematic drift. A different treatment of the water and soil moisture budget in LPJ-GUESS is a likely cause of this drift. The coupled system reduces the cold bias of the reference model over land by reducing LAI (and the associated evaporative cooling), particularly outside the growing season. The coupling with the interactive vegetation module implies more degrees of freedom in the coupled model, which generates more noise that can mask a portion of the ex...
Atmospheric Chemistry and Physics | 2012
N.L. Banda; M. Krol; M. van Weele; T. van Noije; T. Röckmann
The global methane (CH 4) growth rate showed large variations after the eruption of Mount Pinatubo in June 1991. Both sources and sinks of tropospheric CH 4 were altered following the eruption, by feedback processes between climate and tropospheric photochemistry. Such processes include Ultra Violet (UV) radiative changes due to the presence of volcanic sulfur dioxide (SO 2) and sulphate aerosols in the stratosphere, and due to stratospheric ozone depletion. Changes in temperature and water vapour in the following years caused changes in tropospheric chemistry, as well as in natural emissions. We present a sensitivity study that investigates the relative effects that these processes had on tropospheric CH4 concentrations, using a simple onedimensional chemistry model representative for the global tropospheric column. To infer the changes in UV radiative fluxes, the chemistry model is coupled to a radiative transfer model. We find that the overall effect of natural processes after the eruption on the CH 4 growth rate is dominated by the reduction in CH4 lifetime due to stratospheric ozone depletion. However, all the other processes are found to have non-negligible effects, and should therefore be taken into account in order to obtain a good estimate of CH 4 concentrations after Pinatubo. We find that the overall effect was a small initial increase in the CH 4 growth rate after the eruption, followed by a decrease of about 7 ppb yr −1 by mid1993. When changes in anthropogenic emissions are employed according to emission inventories, an additional decrease of about 5 ppb yr −1 in the CH4 growth rate is obtained between the years 1991 and 1993. The results using the simplified single column model are in good qualitative agreement with observed changes in the CH 4 growth rate. Further analysis, taking into account changes in the dynamics of the atmosphere, variations in emissions from biomass burning, and in biogenic emissions of non-methane volatile organic compounds (NMVOC), requires the use of a full threedimensional model.
Archive | 2014
Sebastian Rast; M. G. Schultz; Isabelle Bey; T. van Noije; Adetutu M. Aghedo; Guy P. Brasseur; Thomas Diehl; Monika Esch; Laurens Ganzeveld; Ingo Kirchner; Luis Kornblueh; Andreas Rhodin; Erich Roeckner; Hauke Schmidt; Sabine Schröder; Uwe Schulzweida; P. Stier; K. Thomas; Stacy Walters
The Tropospheric Chemistry General Circulation model ECHAM5-MOZ was developed between 2001 and 2005 and was used to investigate the variability and trends of ozone, CO and NOx in the second half of the 20th century in the framework of the RETRO project. The multi–decadal simulation of the period of 1960 to 2000 was one of the first of that kind. The model captures many features of the seasonal cycle and vertical gradients of trace gas concentrations measured on the ground or from balloons, aircraft or satellite. We diagnose a significant high bias in the simulated ozone concentrations in the 1990s, which can in part be attributed to an overestimated stratosphere troposphere exchange and possibly underestimated dry deposition of ozone. Wintertime CO concentrations in the northern hemisphere are underestimated by up to 30%. The observed interannual variability of the tropospheric NO2 column, surface CO concentrations and ozone is generally captured by the simulation, but the model fails to capture the surface ozone increase observed at several stations around the world during the 1980s and 1990s. The increase in the tropospheric ozone column between the 1960s and 1990s is consistent with model simulations of preindustrial conditions. The global ozone burden and chemical formation and loss are continuously rising during the entire 41-year simulation period. The dry deposition flux increases until the early 1980s and shows a more irregular behavior afterwards. Until around 1980 regionally averaged precursor emissions correlate well with surface ozone changes. Thereafter, the emission trend in Europe and North America is reversed, while ozone levels remain high. Asian emissions and ozone concentrations continue to rise, but the slope of the correlation changes.
Atmospheric Chemistry and Physics | 2012
Gunnar Myhre; Bjørn H. Samset; Michael Schulz; Yves Balkanski; Susanne E. Bauer; Terje K. Berntsen; Huisheng Bian; Nicolas Bellouin; Mian Chin; Thomas Diehl; Richard C. Easter; Johann Feichter; Steven J. Ghan; D. A. Hauglustaine; Trond Iversen; Stefan Kinne; A. Kirkevåg; Jean-Francois Lamarque; Guangxing Lin; Xiaohong Liu; Marianne Tronstad Lund; G. Luo; Xiaoyan Ma; T. van Noije; Joyce E. Penner; P. J. Rasch; A. Ruiz; Øyvind Seland; Ragnhild Bieltvedt Skeie; P. Stier
Environmental Science & Technology | 2006
F. Dentener; David S. Stevenson; K. Ellingsen; T. van Noije; M. G. Schultz; M. Amann; Cynthia S. Atherton; N. Bell; D. Bergmann; Isabelle Bey; Lex Bouwman; T. Butler; J. Cofala; Bill Collins; J. Drevet; Ruth M. Doherty; B. Eickhout; Henk Eskes; Arlene M. Fiore; M. Gauss; D. A. Hauglustaine; Larry W. Horowitz; Ivar S. A. Isaksen; B. Josse; M. G. Lawrence; M. Krol; Jean-Francois Lamarque; V. Montanaro; J.-F. Müller; V.-H. Peuch
Climate Dynamics | 2012
Wilco Hazeleger; Xiaoli Wang; C. Severijns; S. Ştefănescu; Richard Bintanja; Andreas Sterl; Klaus Wyser; T. Semmler; Shuting Yang; B. J. J. M. van den Hurk; T. van Noije; E. van der Linden; K. van der Wiel