T. van Walsum
Erasmus University Rotterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. van Walsum.
IEEE Transactions on Medical Imaging | 1999
A.F. Frangi; Wiro J. Niessen; Romhild M. Hoogeveen; T. van Walsum; Max A. Viergever
Quantification of the degree of stenosis or vessel dimensions are important for diagnosis of vascular diseases and planning vascular interventions. Although diagnosis from three-dimensional (3-D) magnetic resonance angiograms (MRAs) is mainly performed on two-dimensional (2-D) maximum intensity projections, automated quantification of vascular segments directly from the 3-D dataset is desirable to provide accurate and objective measurements of the 3-D anatomy. A model-based method for quantitative 3-D MRA is proposed. Linear vessel segments are modeled with a central vessel axis curve coupled to a vessel wall surface. A novel image feature to guide the deformation of the central vessel axis is introduced. Subsequently, concepts of deformable models are combined with knowledge of the physics of the acquisition technique to accurately segment the vessel wall and compute the vessel diameter and other geometrical properties. The method is illustrated and validated on a carotid bifurcation phantom, with ground truth and medical experts as comparisons. Also, results on 3-D time-of-flight (TOF) MRA images of the carotids are shown. The approach is a promising technique to assess several geometrical vascular parameters directly on the source 3-D images, providing an objective mechanism for stenosis grading.
Medical Image Analysis | 2011
Coert Metz; Stefan Klein; Michiel Schaap; T. van Walsum; Wiro J. Niessen
A registration method for motion estimation in dynamic medical imaging data is proposed. Registration is performed directly on the dynamic image, thus avoiding a bias towards a specifically chosen reference time point. Both spatial and temporal smoothness of the transformations are taken into account. Optionally, cyclic motion can be imposed, which can be useful for visualization (viewing the segmentation sequentially) or model building purposes. The method is based on a 3D (2D+time) or 4D (3D+time) free-form B-spline deformation model, a similarity metric that minimizes the intensity variances over time and constrained optimization using a stochastic gradient descent method with adaptive step size estimation. The method was quantitatively compared with existing registration techniques on synthetic data and 3D+t computed tomography data of the lungs. This showed subvoxel accuracy while delivering smooth transformations, and high consistency of the registration results. Furthermore, the accuracy of semi-automatic derivation of left ventricular volume curves from 3D+t computed tomography angiography data of the heart was evaluated. On average, the deviation from the curves derived from the manual annotations was approximately 3%. The potential of the method for other imaging modalities was shown on 2D+t ultrasound and 2D+t magnetic resonance images. The software is publicly available as an extension to the registration package elastix.
IEEE Transactions on Medical Imaging | 2005
E. B. van de Kraats; Graeme P. Penney; D Tomazevic; T. van Walsum; Wiro J. Niessen
In the past few years, a number of two-dimensional (2-D) to three-dimensional (3-D) (2-D-3-D) registration algorithms have been introduced. However, these methods have been developed and evaluated for specific applications, and have not been directly compared. Understanding and evaluating their performance is therefore an open and important issue. To address this challenge we introduce a standardized evaluation methodology, which can be used for all types of 2-D-3-D registration methods and for different applications and anatomies. Our evaluation methodology uses the calibrated geometry of a 3-D rotational X-ray (3DRX) imaging system (Philips Medical Systems, Best, The Netherlands) in combination with image-based 3-D-3-D registration for attaining a highly accurate gold standard for 2-D X-ray to 3-D MR/CT/3DRX registration. Furthermore, we propose standardized starting positions and failure criteria to allow future researchers to directly compare their methods. As an illustration, the proposed methodology has been used to evaluate the performance of two 2-D-3-D registration techniques, viz. a gradient-based and an intensity-based method, for images of the spine. The data and gold standard transformations are available on the internet (http://www.isi.uu.nl/Research/Databases/).
Medical Image Analysis | 2011
Nora Baka; Bart L. Kaptein; M. de Bruijne; T. van Walsum; J.E. Giphart; Wiro J. Niessen; Boudewijn P. F. Lelieveldt
Three-dimensional patient specific bone models are required in a range of medical applications, such as pre-operative surgery planning and improved guidance during surgery, modeling and simulation, and in vivo bone motion tracking. Shape reconstruction from a small number of X-ray images is desired as it lowers both the acquisition costs and the radiation dose compared to CT. We propose a method for pose estimation and shape reconstruction of 3D bone surfaces from two (or more) calibrated X-ray images using a statistical shape model (SSM). User interaction is limited to manual initialization of the mean shape. The proposed method combines a 3D distance based objective function with automatic edge selection on a Canny edge map. Landmark-edge correspondences are weighted based on the orientation difference of the projected silhouette and the corresponding image edge. The method was evaluated by rigid pose estimation of ground truth shapes as well as 3D shape estimation using a SSM of the whole femur, from stereo cadaver X-rays, in vivo biplane fluoroscopy image-pairs, and an in vivo biplane fluoroscopic sequence. Ground truth shapes for all experiments were available in the form of CT segmentations. Rigid registration of the ground truth shape to the biplane fluoroscopy achieved sub-millimeter accuracy (0.68mm) measured as root mean squared (RMS) point-to-surface (P2S) distance. The non-rigid reconstruction from the biplane fluoroscopy using the SSM also showed promising results (1.68mm RMS P2S). A feasibility study on one fluoroscopic time series illustrates the potential of the method for motion and shape estimation from fluoroscopic sequences with minimal user interaction.
Medical Image Analysis | 2013
Hortense A. Kirisli; Michiel Schaap; Coert Metz; Anoeshka S. Dharampal; W. B. Meijboom; S. L. Papadopoulou; Admir Dedic; Koen Nieman; M. A. de Graaf; M. F. L. Meijs; M. J. Cramer; Alexander Broersen; Suheyla Cetin; Abouzar Eslami; Leonardo Flórez-Valencia; Kuo-Lung Lor; Bogdan J. Matuszewski; I. Melki; B. Mohr; Ilkay Oksuz; Rahil Shahzad; Chunliang Wang; Pieter H. Kitslaar; Gözde B. Ünal; Amin Katouzian; Maciej Orkisz; Chung-Ming Chen; Frédéric Precioso; Laurent Najman; S. Masood
Though conventional coronary angiography (CCA) has been the standard of reference for diagnosing coronary artery disease in the past decades, computed tomography angiography (CTA) has rapidly emerged, and is nowadays widely used in clinical practice. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms devised to detect and quantify the coronary artery stenoses, and to segment the coronary artery lumen in CTA data. The objective of this evaluation framework is to demonstrate the feasibility of dedicated algorithms to: (1) (semi-)automatically detect and quantify stenosis on CTA, in comparison with quantitative coronary angiography (QCA) and CTA consensus reading, and (2) (semi-)automatically segment the coronary lumen on CTA, in comparison with experts manual annotation. A database consisting of 48 multicenter multivendor cardiac CTA datasets with corresponding reference standards are described and made available. The algorithms from 11 research groups were quantitatively evaluated and compared. The results show that (1) some of the current stenosis detection/quantification algorithms may be used for triage or as a second-reader in clinical practice, and that (2) automatic lumen segmentation is possible with a precision similar to that obtained by experts. The framework is open for new submissions through the website, at http://coronary.bigr.nl/stenoses/.
IEEE Transactions on Medical Imaging | 2003
Shirley A. M. Baert; E. B. van de Kraats; T. van Walsum; Max A. Viergever; Wiro J. Niessen
Using three-dimensional rotational X-ray angiography (3DRA), three-dimensional (3-D) information of the vasculature can be obtained prior to endovascular interventions. However, during interventions, the radiologist has to rely on fluoroscopy images to manipulate the guide wire. In order to take full advantage of the 3-D information from 3DRA data during endovascular interventions, a method is presented that yields an integrated display of the position of the guide wire and vasculature in 3-D. The method relies on an automated method that tracks the guide wire simultaneously in biplane fluoroscopy images. Based on the calibrated geometry of the C-arm, the 3-D guide-wire position is determined and visualized in the 3-D coordinate system of the vasculature. The method is evaluated in an intracranial anthropomorphic vascular phantom. The influence of the angle between projections, distortion correction of the projection images, and accuracy of geometry knowledge on the accuracy of 3-D guide-wire reconstruction from biplane images is determined. If the calibrated geometry information is used and the images are corrected for distortion, a mean distance to the reference standard of 0.42 mm and a tip distance of 0.65 mm is found, which means that accurate guide-wire reconstruction from biplane images can be performed.
Medical Physics | 2010
Hortense A. Kirisli; Michiel Schaap; Stefan Klein; S. L. Papadopoulou; M. Bonardi; C. H. Chen; Annick C. Weustink; Nico R. Mollet; E. J. Vonken; R.J. van der Geest; T. van Walsum; Wiro J. Niessen
PURPOSE Computed tomography angiography (CTA) is increasingly used for the diagnosis of coronary artery disease (CAD). However, CTA is not commonly used for the assessment of ventricular and atrial function, although functional information extracted from CTA data is expected to improve the diagnostic value of the examination. In clinical practice, the extraction of ventricular and atrial functional information, such as stroke volume and ejection fraction, requires accurate delineation of cardiac chambers. In this paper, we investigated the accuracy and robustness of cardiac chamber delineation using a multiatlas based segmentation method on multicenter and multivendor CTA data. METHODS A fully automatic multiatlas based method for segmenting the whole heart (i.e., the outer surface of the pericardium) and cardiac chambers from CTA data is presented and evaluated. In the segmentation approach, eight atlas images are registered to a new patients CTA scan. The eight corresponding manually labeled images are then propagated and combined using a per voxel majority voting procedure, to obtain a cardiac segmentation. RESULTS The method was evaluated on a multicenter/multivendor database, consisting of (1) a set of 1380 Siemens scans from 795 patients and (2) a set of 60 multivendor scans (Siemens, Philips, and GE) from different patients, acquired in six different institutions worldwide. A leave-one-out 3D quantitative validation was carried out on the eight atlas images; we obtained a mean surface-to-surface error of 0.94 +/- 1.12 mm and an average Dice coefficient of 0.93 was achieved. A 2D quantitative evaluation was performed on the 60 multivendor data sets. Here, we observed a mean surface-to-surface error of 1.26 +/- 1.25 mm and an average Dice coefficient of 0.91 was achieved. In addition to this quantitative evaluation, a large-scale 2D and 3D qualitative evaluation was performed on 1380 and 140 images, respectively. Experts evaluated that 49% of the 1380 images were very accurately segmented (below 1 mm error) and that 29% were accurately segmented (error between 1 and 3 mm), which demonstrates the robustness of the presented method. CONCLUSIONS A fully automatic method for whole heart and cardiac chamber segmentation was presented and evaluated using multicenter/multivendor CTA data. The accuracy and robustness of the method were demonstrated by successfully applying the method to 1420 multicenter/ multivendor data sets.
Medical Image Analysis | 2011
K. Hameeteman; Maria A. Zuluaga; Moti Freiman; Leo Joskowicz; Olivier Cuisenaire; L. Florez Valencia; M. A. Gülsün; Karl Krissian; Julien Mille; Wilbur C.K. Wong; Maciej Orkisz; Hüseyin Tek; M. Hernández Hoyos; Fethallah Benmansour; Albert Chi Shing Chung; Sietske Rozie; M. Van Gils; L. Van den Borne; Jacob Sosna; P. Berman; N. Cohen; Philippe Douek; Ingrid Sanchez; M. Aissat; Michiel Schaap; Coert Metz; Gabriel P. Krestin; A. van der Lugt; Wiro J. Niessen; T. van Walsum
This paper describes an evaluation framework that allows a standardized and objective quantitative comparison of carotid artery lumen segmentation and stenosis grading algorithms. We describe the data repository comprising 56 multi-center, multi-vendor CTA datasets, their acquisition, the creation of the reference standard and the evaluation measures. This framework has been introduced at the MICCAI 2009 workshop 3D Segmentation in the Clinic: A Grand Challenge III, and we compare the results of eight teams that participated. These results show that automated segmentation of the vessel lumen is possible with a precision that is comparable to manual annotation. The framework is open for new submissions through the website http://cls2009.bigr.nl.
Medical Physics | 2009
Coert Metz; Michiel Schaap; Annick C. Weustink; Nico R. Mollet; T. van Walsum; Wiro J. Niessen
PURPOSE The application and large-scale evaluation of minimum cost path approaches for coronary centerline extraction from computed tomography coronary angiography (CTCA) data and the development and evaluation of a novel method to reduce the user-interaction time. METHODS A semiautomatic method based on a minimum cost path approach is evaluated for two different cost functions. The first cost function is based on a frequently used vesselness measure and intensity information, and the second is a recently proposed cost function based on region statistics. User interaction is minimized to one or two mouse clicks distally in the coronary artery. The starting point for the minimum cost path search is automatically determined using a newly developed method that finds a point in the center of the aorta in one of the axial slices. This step ensures that all computationally expensive parts of the algorithm can be precomputed. RESULTS The performance of the aorta localization procedure was demonstrated by a success rate of 100% in 75 images. The success rate and accuracy of centerline extraction was quantitatively evaluated on 48 coronary arteries in 12 images by comparing extracted centerlines with a manually annotated reference standard. The method was able to extract 88% and 47% of the vessel center-lines correctly using the vesselness/intensity and region statistics cost function, respectively. For only the proximal part of the vessels these values were 97% and 86%, respectively. Accuracy of centerline extraction, defined as the average distance from correctly automatically extracted parts of the centerline to the reference standard, was 0.64 mm for the vesselness/intensity and 0.51 mm for the region statistics cost function. The interobserver variability was 99% for the success rate measure and 0.42 mm for the accuracy measure. Qualitative evaluation using the best performing cost function resulted in successful centerline extraction for 233 out of the 252 coronaries (92%) in 63 additional CTCA images. CONCLUSIONS The presented results, in combination with minimal user interaction and low computation time, show that minimum cost path approaches can effectively be applied as a preprocessing step for subsequent analysis in clinical practice and biomedical research.
IEEE Transactions on Medical Imaging | 2011
Michiel Schaap; T. van Walsum; Lisan A. Neefjes; Coert Metz; Ermanno Capuano; M. de Bruijne; Wiro J. Niessen
This paper presents a vessel segmentation method which learns the geometry and appearance of vessels in medical images from annotated data and uses this knowledge to segment vessels in unseen images. Vessels are segmented in a coarse-to-fine fashion. First, the vessel boundaries are estimated with multivariate linear regression using image intensities sampled in a region of interest around an initialization curve. Subsequently, the position of the vessel boundary is refined with a robust nonlinear regression technique using intensity profiles sampled across the boundary of the rough segmentation and using information about plausible cross-sectional vessel shapes. The method was evaluated by quantitatively comparing segmentation results to manual annotations of 229 coronary arteries. On average the difference between the automatically obtained segmentations and manual contours was smaller than the inter-observer variability, which is an indicator that the method outperforms manual annotation. The method was also evaluated by using it for centerline refinement on 24 publicly available datasets of the Rotterdam Coronary Artery Evaluation Framework. Centerlines are extracted with an existing method and refined with the proposed method. This combination is currently ranked second out of 10 evaluated interactive centerline extraction methods. An additional qualitative expert evaluation in which 250 automatic segmentations were compared to manual segmentations showed that the automatically obtained contours were rated on average better than manual contours.