T. Yuan
University of Colorado Boulder
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. Yuan.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2012
S. Assylbekov; G. Barr; B. E. Berger; H. G. Berns; D. Beznosko; A. Bodek; R. Bradford; N. J. Buchanan; H. S. Budd; Y. Caffari; K. Connolly; I. Danko; R. Das; S. Davis; M. Day; S. A. Dytman; M. Dziomba; R. Flight; D. A. Forbush; K. Gilje; D. Hansen; J. Hignight; J. Imber; R. A. Johnson; C. K. Jung; V. Kravtsov; P. T. Le; G. D. Lopez; C.J. Malafis; S. Manly
Abstract The pi–zero detector (POD) is one of the subdetectors that makes up the off-axis near detector for the Tokai-to-Kamioka (T2K) long baseline neutrino experiment. The primary goal for the POD is to measure the relevant cross-sections for neutrino interactions that generate π 0 s, especially the cross-section for neutral current π 0 interactions, which are one of the dominant sources of background to the ν μ → ν e appearance signal in T2K. The POD is composed of layers of plastic scintillator alternating with water bags and brass sheets or lead sheets and is one of the first detectors to use Multi-Pixel Photon Counters (MPPCs) on a large scale.
Physical Review C | 2016
X. Lu; L. Pickering; S. Dolan; G. Barr; D. Coplowe; Y. Uchida; D. Wark; M. O. Wascko; A. Weber; T. Yuan
We present a phenomenological study of nuclear effects in neutrino charged-current interactions, using transverse kinematic imbalances in exclusive measurements. Novel observables with minimal dependence on neutrino energy are proposed to study quasielastic scattering, and especially resonance production. They should be able to provide direct constraints on nuclear effects in neutrino- and antineutrino-nucleus interactions.