Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taavi Lehto is active.

Publication


Featured researches published by Taavi Lehto.


Nucleic Acids Research | 2011

Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo

Samir El Andaloussi; Taavi Lehto; Imre Mäger; Katri Rosenthal-Aizman; Iulian I. Oprea; Oscar E. Simonson; Helena Sork; Kariem Ezzat; Dana Maria Copolovici; Kaido Kurrikoff; Joana R. Viola; Eman M. Zaghloul; Rannar Sillard; H. Johansson; Fatouma Said Hassane; Peter Guterstam; Julia Suhorutšenko; Pedro M. D. Moreno; Nikita Oskolkov; Jonas Hälldin; Ulf Tedebark; Andres Metspalu; Bernard Lebleu; Janne Lehtiö; C. I. Edvard Smith; Ülo Langel

While small interfering RNAs (siRNAs) have been rapidly appreciated to silence genes, efficient and non-toxic vectors for primary cells and for systemic in vivo delivery are lacking. Several siRNA-delivery vehicles, including cell-penetrating peptides (CPPs), have been developed but their utility is often restricted by entrapment following endocytosis. Hence, developing CPPs that promote endosomal escape is a prerequisite for successful siRNA implementation. We here present a novel CPP, PepFect 6 (PF6), comprising the previously reported stearyl-TP10 peptide, having pH titratable trifluoromethylquinoline moieties covalently incorporated to facilitate endosomal release. Stable PF6/siRNA nanoparticles enter entire cell populations and rapidly promote endosomal escape, resulting in robust RNAi responses in various cell types (including primary cells), with minimal associated transcriptomic or proteomic changes. Furthermore, PF6-mediated delivery is independent of cell confluence and, in most cases, not significantly hampered by serum proteins. Finally, these nanoparticles promote strong RNAi responses in different organs following systemic delivery in mice without any associated toxicity. Strikingly, similar knockdown in liver is achieved by PF6/siRNA nanoparticles and siRNA injected by hydrodynamic infusion, a golden standard technique for liver transfection. These results imply that the peptide, in addition to having utility for RNAi screens in vitro, displays therapeutic potential.


Nucleic Acids Research | 2011

PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation

Kariem Ezzat; Samir El Andaloussi; Eman M. Zaghloul; Taavi Lehto; Staffan Lindberg; Pedro M. D. Moreno; Joana R. Viola; Tarek Magdy; Rania Abdo; Peter Guterstam; Rannar Sillard; Suzan M. Hammond; Matthew Wood; Andrey Arzumanov; Michael J. Gait; C. I. Edvard Smith; Mattias Hällbrink; Ülo Langel

Numerous human genetic diseases are caused by mutations that give rise to aberrant alternative splicing. Recently, several of these debilitating disorders have been shown to be amenable for splice-correcting oligonucleotides (SCOs) that modify splicing patterns and restore the phenotype in experimental models. However, translational approaches are required to transform SCOs into usable drug products. In this study, we present a new cell-penetrating peptide, PepFect14 (PF14), which efficiently delivers SCOs to different cell models including HeLa pLuc705 and mdx mouse myotubes; a cell culture model of Duchenne’s muscular dystrophy (DMD). Non-covalent PF14-SCO nanocomplexes induce splice-correction at rates higher than the commercially available lipid-based vector Lipofectamine™ 2000 (LF2000) and remain active in the presence of serum. Furthermore, we demonstrate the feasibility of incorporating this delivery system into solid formulations that could be suitable for several therapeutic applications. Solid dispersion technique is utilized and the formed solid formulations are as active as the freshly prepared nanocomplexes in solution even when stored at an elevated temperatures for several weeks. In contrast, LF2000 drastically loses activity after being subjected to same procedure. This shows that using PF14 is a very promising translational approach for the delivery of SCOs in different pharmaceutical forms.


Molecular Therapy | 2011

A peptide-based vector for efficient gene transfer in vitro and in vivo.

Taavi Lehto; Oscar E. Simonson; Imre Mäger; Kariem Ezzat; Helena Sork; Dana-Maria Copolovici; Joana R. Viola; Eman M. Zaghloul; Per Lundin; Pedro M. D. Moreno; Maarja Mäe; Nikita Oskolkov; Julia Suhorutšenko; C. I. Edvard Smith; Samir El Andaloussi

Finding suitable nonviral delivery vehicles for nucleic acid-based therapeutics is a landmark goal in gene therapy. Cell-penetrating peptides (CPPs) are one class of delivery vectors that has been exploited for this purpose. However, since CPPs use endocytosis to enter cells, a large fraction of peptides remain trapped in endosomes. We have previously reported that stearylation of amphipathic CPPs, such as transportan 10 (TP10), dramatically increases transfection of oligonucleotides in vitro partially by promoting endosomal escape. Therefore, we aimed to evaluate whether stearyl-TP10 could be used for the delivery of plasmids as well. Our results demonstrate that stearyl-TP10 forms stable nanoparticles with plasmids that efficiently enter different cell-types in a ubiquitous manner, including primary cells, resulting in significantly higher gene expression levels than when using stearyl-Arg9 or unmodified CPPs. In fact, the transfection efficacy of stearyl-TP10 almost reached the levels of Lipofectamine 2000 (LF2000), however, without any of the observed lipofection-associated toxicities. Most importantly, stearyl-TP10/plasmid nanoparticles are nonimmunogenic, mediate efficient gene delivery in vivo, when administrated intramuscularly (i.m.) or intradermally (i.d.) without any associated toxicity in mice.Finding suitable nonviral delivery vehicles for nucleic acid-based therapeutics is a landmark goal in gene therapy. Cell-penetrating peptides (CPPs) are one class of delivery vectors that has been exploited for this purpose. However, since CPPs use endocytosis to enter cells, a large fraction of peptides remain trapped in endosomes. We have previously reported that stearylation of amphipathic CPPs, such as transportan 10 (TP10), dramatically increases transfection of oligonucleotides in vitro partially by promoting endosomal escape. Therefore, we aimed to evaluate whether stearyl-TP10 could be used for the delivery of plasmids as well. Our results demonstrate that stearyl-TP10 forms stable nanoparticles with plasmids that efficiently enter different cell-types in a ubiquitous manner, including primary cells, resulting in significantly higher gene expression levels than when using stearyl-Arg9 or unmodified CPPs. In fact, the transfection efficacy of stearyl-TP10 almost reached the levels of Lipofectamine 2000 (LF2000), however, without any of the observed lipofection-associated toxicities. Most importantly, stearyl-TP10/plasmid nanoparticles are nonimmunogenic, mediate efficient gene delivery in vivo, when administrated intramuscularly (i.m.) or intradermally (i.d.) without any associated toxicity in mice.


Expert Opinion on Drug Delivery | 2012

Cell-penetrating peptides for the delivery of nucleic acids

Taavi Lehto; Kaido Kurrikoff; Ülo Langel

Introduction: Different gene therapy approaches have gained extensive interest lately and, after many initial hurdles, several promising approaches have reached to the clinics. Successful implementation of gene therapy is heavily relying on finding efficient measures to deliver genetic material to cells. Recently, non-viral delivery of nucleic acids and their analogs has gained significant interest. Among non-viral vectors, cell-penetrating peptides (CPPs) have been extensively used for the delivery of nucleic acids both in vitro and in vivo. Areas covered: In this review we will discuss recent advances of CPP-mediated delivery of nucleic acid-based cargo, concentrating on the delivery of plasmid DNA, splice-correcting ONs, and small-interfering RNAs. Expert opinion: CPPs have proved their potential as carriers for nucleic acids. However, similarly to other non-viral vectors, CPPs require further development, as efficient systemic delivery is still seldom achieved. To achieve this, CPPs should be modified with entities that would allow better endosomal escape, targeting of specific tissues and cells, and shielding agents that increase the half-life of the vehicles. Finally, to understand the clinical potential of CPPs, they require more thorough investigations in clinically relevant disease models and in pre-clinical and clinical studies.


The Journal of Molecular Diagnostics | 2014

Sensitive and Rapid Detection of Chlamydia trachomatis by Recombinase Polymerase Amplification Directly from Urine Samples

Katrin Krõlov; Jekaterina Frolova; Oana Tudoran; Julia Suhorutšenko; Taavi Lehto; Hiljar Sibul; Imre Mäger; Made Laanpere; Indrek Tulp; Ülo Langel

Chlamydia trachomatis is the most common sexually transmitted human pathogen. Infection results in minimal to no symptoms in approximately two-thirds of women and therefore often goes undiagnosed. C. trachomatis infections are a major public health concern because of the potential severe long-term consequences, including an increased risk of ectopic pregnancy, chronic pelvic pain, and infertility. To date, several point-of-care tests have been developed for C. trachomatis diagnostics. Although many of them are fast and specific, they lack the required sensitivity for large-scale application. We describe a rapid and sensitive form of detection directly from urine samples. The assay uses recombinase polymerase amplification and has a minimum detection limit of 5 to 12 pathogens per test. Furthermore, it enables detection within 20 minutes directly from urine samples without DNA purification before the amplification reaction. Initial analysis of the assay from clinical patient samples had a specificity of 100% (95% CI, 92%-100%) and a sensitivity of 83% (95% CI, 51%-97%). The whole procedure is fairly simple and does not require specific machinery, making it potentially applicable in point-of-care settings.


Expert Opinion on Drug Delivery | 2009

Chemically modified cell-penetrating peptides for the delivery of nucleic acids

Maarja Mäe; Samir El Andaloussi; Taavi Lehto; Ülo Langel

Short nucleic acids targeting biologically important RNAs and plasmids have been shown to be promising future therapeutics; however, their hydrophilic nature greatly limits their utility in clinics and therefore efficient delivery vectors are greatly needed. Cell-penetrating peptides (CPPs) are relatively short amphipathic and/or cationic peptides that are able to transport various biologically active molecules inside mammalian cells, both in vitro and in vivo, in a seemingly non-toxic fashion. Although CPPs have proved to be appealing drug delivery vehicles, their major limitation in nucleic acid delivery is that most of the internalized peptide-cargo is entrapped in endosomal compartments following endocytosis and the bioavailability is therefore severely reduced. Several groups are working towards overcoming this obstacle and this review highlights the evidence that by introducing chemical modification in CPPs, the bioavailability of delivered nucleic acids increases significantly.


Journal of Controlled Release | 2012

Solid formulation of cell-penetrating peptide nanocomplexes with siRNA and their stability in simulated gastric conditions.

Kariem Ezzat; Eman M. Zaghloul; Samir El Andaloussi; Taavi Lehto; Ramy El-Sayed; Tarek Magdy; C. I. Edvard Smith; Ülo Langel

Abstract Cell-penetrating peptides (CPPs) are short cationic peptides that have been extensively studied as drug delivery vehicles for proteins, nucleic acids and nanoparticles. However, the formulation of CPP-based therapeutics into different pharmaceutical formulations and their stability in relevant biological environments have not been given the same attention. Here, we show that a newly developed CPP, PepFect 14 (PF14), forms non-covalent nanocomplexes with short interfering RNA (siRNA), which are able to elicit efficient RNA-interference (RNAi) response in different cell-lines. RNAi effect is obtained at low siRNA doses with a unique kinetic profile. Furthermore, the solid dispersion technique is utilized to formulate PF14/siRNA nanocomplexes into solid formulations that are as active as the freshly prepared nanocomplexes in solution. Importantly, the nanocomplexes are stable and active in mediating RNAi response after incubation with simulated gastric fluid (SGF) that is highly acidic. These results demonstrate the activity of PF14 in delivering and protecting siRNA in different pharmaceutical forms and biological environments.


Biochimica et Biophysica Acta | 2012

The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides.

Imre Mäger; Kent Langel; Taavi Lehto; Emelía Eiríksdóttir; Ülo Langel

Cell-penetrating peptides (CPPs) are short cationic/amphipathic peptides that can be used to deliver a variety of cargos into cells. However, it is still debated which routes CPPs employ to gain access to intracellular compartments. To assess this, most previously conducted studies have relied on information which is gained by using fluorescently labeled CPPs. More relevant information whether the internalized conjugates are biologically available has been gathered using end-point assays with biological readouts. Uptake kinetic studies have shed even more light on the matter because the arbitrary choice of end-point might have profound effect how the results could be interpreted. To elucidate uptake mechanisms of CPPs, here we have used a bioluminescence based assay to measure cytosolic delivery kinetics of luciferin-CPP conjugates in the presence of endocytosis inhibitors. The results suggest that these conjugates are delivered into cytosol mainly via macropinocytosis; clathrin-mediated endocytosis and caveolae/lipid raft dependent endocytosis are involved in a smaller extent. Furthermore, we demonstrate how the involved endocytic routes and internalization kinetic profiles can depend on conjugate concentration in case of certain peptides, but not in case of others. The employed internalization route, however, likely dictates the intracellular fate and subsequent trafficking of internalized ligands, therefore emphasizing the importance of our novel findings for delivery vector development.


Bioconjugate Chemistry | 2010

Cellular internalization kinetics of (luciferin-)cell-penetrating peptide conjugates.

Emelía Eiríksdóttir; Imre Mäger; Taavi Lehto; Samir El Andaloussi; Ülo Langel

Cell-penetrating peptides (CPPs) belong to a class of delivery vectors that have been extensively used for the cellular delivery of various, otherwise impermeable, macromolecules. However, results on the cellular internalization efficacy of CPPs obtained from various laboratories are sometimes challenging to compare because of differences in the experimental setups. Here, for the first time, the cellular uptake kinetics of eight well-established CPPs is compared in HeLa pLuc 705 cells using a recently published releasable luciferin assay. Using this assay, the kinetic behavior of cytosolic entry of these luciferin-CPP conjugates are registered in real time. Our data reveal that the uptake rate of CPPs reaches its maximum either in seconds or in tens of minutes, depending on the CPP used. Tat and higher concentrations of MAP and TP10 display fast internalization profiles that resemble the kinetic profile of membrane-permeable free luciferin. The uptake of the other peptides, pVec, penetratin, M918, and EB1, is much slower and is consistent with the reported observations of endocytosis being the predominant internalization mechanism. Additionally, to some extent, the latter CPPs can be clustered into subgroups which are based on time points when the most pronounced uptake rates are observed. This may indicate once more involvement of various (concentration dependent) mechanisms in the uptake of CPPs. In summary, the variances in the internalization profiles for the CPPs demonstrate the importance of measuring kinetics instead of only relying on simple end-point studies, and with the luciferin-CPP assay, more lucid information can be retrieved when studying the internalization mechanisms of CPPs.


Molecular Pharmaceutics | 2013

PepFect14 Peptide Vector for Efficient Gene Delivery in Cell Cultures

Kadi-Liis Veiman; Imre Mäger; Kariem Ezzat; Helerin Margus; Tõnis Lehto; Kent Langel; Kaido Kurrikoff; Piret Arukuusk; Julia Suhorutšenko; Kärt Padari; Margus Pooga; Taavi Lehto; Ülo Langel

The successful applicability of gene therapy approaches will heavily rely on the development of efficient and safe nonviral gene delivery vectors, for example, cell-penetrating peptides (CPPs). CPPs can condense oligonucleotides and plasmid DNA (pDNA) into nanoparticles, thus allowing the transfection of genetic material into cells. However, despite few promising attempts, CPP-mediated pDNA delivery has been relatively inefficient due to the unfavorable nanoparticle characteristics or the nanoparticle entrapment to endocytic compartments. In many cases, both of these drawbacks could be alleviated by modifying CPPs with a stearic acid residue, as demonstrated in the delivery of both the pDNA and the short oligonucleotides. In this study, PepFect14 (PF14) peptide, previously used for the transport of shorter oligonucleotides, is demonstrated to be suited also for the delivery of pDNA. It is shown that PF14 forms stable nanoparticles with pDNA with a negative surface charge and size of around 130-170 nm. These nanoparticles facilitate efficient gene delivery and expression in a variety of regular adherent cell lines and also in difficult-to-transfect primary cells. Uptake studies indicate that PF14/pDNA nanoparticles are utilizing class A scavenger receptors (SCARA) and caveolae-mediated endocytosis as the main route for cellular internalization. Conclusively, PF14 is an efficient nonviral vector for gene delivery.

Collaboration


Dive into the Taavi Lehto's collaboration.

Top Co-Authors

Avatar

Ülo Langel

University Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joana R. Viola

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge