Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tadahide Kurokawa is active.

Publication


Featured researches published by Tadahide Kurokawa.


Peptides | 2005

Identification of cDNA coding for a homologue to mammalian leptin from pufferfish, Takifugu rubripes

Tadahide Kurokawa; Susumu Uji; Tohru Suzuki

We identified cDNA coding for a homologue to mammalian leptin in puffer, Takifugu rubripes, using genomic synteny around the human leptin gene. In addition to significant sequence homologies, the puffer leptin (pLEP) displays characteristic structural features in common with mammalian leptin. The pLEP mRNA was expressed mostly in the liver that contained abundant lipids. In addition, homologues to pLEP were found in the databanks for three fish species (salmon, medaka, and Tetraodon) and two amphibians (salamander and Xenopus). The phylogenetic analysis shows rapid rates of molecular divergence among leptins from different vertebrate classes, but not between mammals and avians.


Comparative Biochemistry and Physiology B | 2008

Production of recombinant leptin and its effects on food intake in rainbow trout (Oncorhynchus mykiss)

Koji Murashita; Susumu Uji; Takeshi Yamamoto; Ivar Rønnestad; Tadahide Kurokawa

Leptin is a key factor for the regulation of food intake and energy homeostasis in mammals, but information regarding its role in teleosts is still limited. There are large differences between mammalian and teleost leptin at both gene and protein levels, and in order to characterize the function of leptin in fish, preparation of species-specific leptin is therefore a key step. In this study, full-length cDNA coding for rainbow trout leptin was identified. In spite of low amino acid sequence similarity with other animals, leptin is highly conserved between trout and salmon (98.7%). Based on the cDNA, we produced pure recombinant trout leptin (rt-leptin) in E. coli, with a final yield of 20 mg/L culture medium. We then examined the effects of intraperitoneal (IP) injection of rt-leptin on feeding behavior and gene expression of hypothalamic NPY and POMCs (POMC A1, A2 and B) in a short-term (8 h) experiment. The rt-leptin suppressed food intake and led to transient reduction of NPY mRNA levels, while the expression of POMCs A1 and A2, was elevated compared with vehicle-injected controls. These results for rainbow trout are the first that describe a physiological role of leptin using a species-specific orthologue in teleosts, and they suggest that leptin suppresses food intake mediated by hypothalamic regulation. This anorexic effect is similar to that observed in mammals and frogs and supports that the neuroendocrine pathways that control feeding by leptin are ancient and have been conserved through evolution.


Development | 2004

The Cerberus/Dan-family protein Charon is a negative regulator of Nodal signaling during left-right patterning in zebrafish

Hisashi Hashimoto; Michael Rebagliati; Nadira Ahmad; Osamu Muraoka; Tadahide Kurokawa; Masahiko Hibi; Tohru Suzuki

We have isolated a novel gene, charon, that encodes a member of the Cerberus/Dan family of secreted factors. In zebrafish, Fugu and flounder, charon is expressed in regions embracing Kupffers vesicle, which is considered to be the teleost fish equivalent to the region of the mouse definitive node that is required for left-right (L/R) patterning. Misexpression of Charon elicited phenotypes similar to those of mutant embryos defective in Nodal signaling or embryos overexpressing Antivin(Atv)/Lefty1, an inhibitor for Nodal and Activin. Charon also suppressed the dorsalizing activity of all three of the known zebrafish Nodal-related proteins (Cyclops, Squint and Southpaw), indicating that Charon can antagonize Nodal signaling. Because Southpaw functions in the L/R patterning of lateral plate mesoderm and the diencephalon, we asked whether Charon is involved in regulating L/R asymmetry. Inhibition of Charons function by antisense morpholino oligonucleotides (MOs) led to a loss of L/R polarity, as evidenced by bilateral expression of the left side-specific genes in the lateral plate mesoderm (southpaw, cyclops, atv/lefty1, lefty2 and pitx2) and diencephalon (cyclops, atv/lefty1 and pitx2), and defects in early (heart jogging) and late (heart looping) asymmetric heart development, but did not disturb the notochord development or the atv/lefty1-mediated midline barrier function. MO-mediated inhibition of both Charon and Southpaw led to a reduction in or loss of the expression of the left side-specific genes, suggesting that Southpaw is epistatic to Charon in left-side formation. These data indicate that antagonistic interactions between Charon and Nodal (Southpaw), which take place in regions adjacent to Kupffers vesicle, play an important role in L/R patterning in zebrafish.


General and Comparative Endocrinology | 2010

Leptin and leptin receptor genes in Atlantic salmon: Cloning, phylogeny, tissue distribution and expression correlated to long-term feeding status.

Ivar Rønnestad; Tom O. Nilsen; Koji Murashita; Anna R. Angotzi; Anne-Grethe Gamst Moen; Sigurd O. Stefansson; Peter Kling; Björn Thrandur Björnsson; Tadahide Kurokawa

The present study reports the complete coding sequences for two paralogues for leptin (sLepA1 and sLepA2) and leptin receptor (sLepR) in Atlantic salmon. The deduced 171-amino acid (aa) sequence of sLepA1 and 175 aa sequence for sLepA2 shows 71.6% identity to each other and clusters phylogenetically with teleost Lep type A, with 22.4% and 24.1% identity to human Lep. Both sLep proteins are predicted to consist of four helixes showing strong conservation of tertiary structure with other vertebrates. The highest mRNA levels for sLepA1 in fed fish (satiation ration=100%) were observed in the brain, white muscle, liver, and ovaries. In most tissues sLepA2 generally had a lower expression than sLepA1 except for the gastrointestinal tract (stomach and mid-gut) and kidney. Only one leptin receptor ortholog was identified and it shares 24.2% aa sequence similarity with human LepR, with stretches of highest sequence similarity corresponding to domains considered important for LepR signaling. The sLepR was abundantly expressed in the ovary, and was also high in the brain, pituitary, eye, gill, skin, visceral adipose tissue, belly flap, red muscle, kidney, and testis. Fish reared on a rationed feeding regime (60% of satiation) for 10 months grew less than control (100%) and tended to have a lower sLepA1 mRNA expression in the fat-depositing tissues visceral adipose tissue (p<0.05) and white muscle (n.s.). sLepA2 mRNA levels was very low in these tissues and feeding regime tended to affect its expression in an opposite manner. Expression in liver differed from that of the other tissues with a higher sLepA2 mRNA in the feed-rationed group (p<0.01). Plasma levels of sLep did not differ between fish fed restricted and full feeding regimes. No difference in brain sLepR mRNA levels was observed between fish fed reduced and full feeding regimes. This study in part supports that sLepA1 is involved in signaling the energy status in fat-depositing tissues in line with the mammalian model, whereas sLepA2 may possibly play important roles in the digestive tract and liver. At present, data on Lep in teleosts are too scarce to allow generalization about how the Lep system is influenced by tissue-specific energy status and, in turn, may regulate functions related to feed intake, growth, and adiposity in fish. In tetraploid species like Atlantic salmon, different Lep paralogues seems to serve different physiological roles.


General and Comparative Endocrinology | 2009

Genomic characterization of multiple leptin genes and a leptin receptor gene in the Japanese medaka, Oryzias latipes.

Tadahide Kurokawa; Koji Murashita

We comprehensively surveyed leptin (LEP) and leptin receptor (LEPR) genes in medaka, Oryzias latipes and identified two LEP (mLEP-A and mLEP-B) genes and one LEPR (mLEPR) gene. The gene arrangement around both mLEPs in medaka chromosomes 6 and 23 were well conserved with human chromosome 7q31 including LEP. This means that both mLEP-A and mLEP-B are orthologs of human LEP and paralogs derived from whole-genome duplication early in the teleost lineage. The expression of mLEP-A mRNA was relatively high in the liver, and mLEP-B was expressed in the brain and eye. The 3-D modeling of both mLEP-A and mLEP-B protein showed conservation of the four-helix structure that is characteristic in vertebrate leptin. Human LEPR and leptin receptor overlapping the transcript (LEPROT) genes are continuously located on chromosome 1p31. In contrast, medaka LEPR and LEPROT are located on chromosomes 4 and 17, respectively, but both genomic regions showed genomic synteny with the human genome around the LEPR on chromosome 1p31. This result could mean that the medaka chromosome regions around the LEPR and LEPROT are paralogous genomic regions derived from whole-genome duplication, and that the overlapping gene of LEPR and LEPROT was subsequently lost in the medaka genome.


General and Comparative Endocrinology | 2009

A homologous salmonid leptin radioimmunoassay indicates elevated plasma leptin levels during fasting of rainbow trout

Peter Kling; Ivar Rønnestad; Sigurd O. Stefansson; Koji Murashita; Tadahide Kurokawa; Björn Thrandur Björnsson

The present study was conducted to establish a homologous radioimmunoassay (RIA) for quantifying plasma leptin (Lep) levels in salmonid species, and to study Lep levels in relation to nutritional status. A part of the Lep peptide, a 14 amino acid long sequence, identical between a Salmo and an Oncorhynchus species was synthesised. Polyclonal antibodies were raised in rabbit against this antigen and both were subsequently used in the development of a RIA protocol for assessing plasma Lep levels. The limit of detection of the assay was 0.3 nM, and intra- and interassay coefficient of variation (CV) were 8.4% and 13%, respectively. Apart from Atlantic salmon and rainbow trout, the assay exhibits measuring parallelism for a range of fish species, including arctic char, Atlantic cod and turbot, suggesting that the established RIA is useful for quantifying Lep levels in several fish species. The RIA indicates that Lep is found in salmonid plasma at levels of 0.5-5 nM, which is comparable with other peptide hormones, and well within the measuring range of the RIA. A study of fed and fasted rainbow trout showed elevated plasma Lep levels during fasting. In addition there was no correlation between Lep levels and condition factor. These data suggest that the relation between circulating Lep levels and energy status differs from that in mammals. While Lep is linked to energy balance, it may not act as an adiposity signal in salmonids, possibly pointing to functional divergence among ectothermic and endothermic vertebrates.


General and Comparative Endocrinology | 2009

Ghrelin, cholecystokinin, and peptide YY in Atlantic salmon (Salmo salar) : Molecular cloning and tissue expression

Koji Murashita; Tadahide Kurokawa; Tom O. Nilsen; Ivar Rønnestad

Gastrointestinal (GI) peptide hormones, ghrelin (GHRL), cholecystokinin (CCK), and peptide YY (PYY) genes were identified in Atlantic salmon, Salmo salar. Full-length cDNAs encoding two isoforms of GHRL (GHRL-1 and GHRL-2), two isoforms of CCK (CCK-L and CCK-N) and peptide YY (PYY) cDNA were obtained. The GHRL-1 and GHRL-2 genes encoded proteins of 111- and 108-amino acids, respectively. Both types of GHRL were mainly expressed in the stomach, but also weakly expressed in the pyloric caeca, mid-gut, adipose tissue, and testis. The CCK-L and CCK-N genes encoded preproproteins of 132- and 140-amino acids, respectively. Both types of CCK were strongly expressed in the brain and comparatively weakly expressed in other tissues, including the digestive tract. In the digestive tract, CCK-L was mainly expressed in the pyloric caeca and hind-gut, while CCK-N was only expressed in the pyloric caeca. The PYY gene encoded for 97-amino acid residues and was mainly expressed in the brain and anterior part of the intestine, including the pyloric caeca. In an experiment, we demonstrated that 6 days starvation led to, increased GHRL-1 mRNA levels in the GI tract (stomach), while there no significant changes in expression levels for the other hormones in the GI tract. This suggests an orexigenic role for GHRL-1 in Atlantic salmon. These data contribute to elucidate the functional relationships among teleost gastrointestinal peptide hormones.


General and Comparative Endocrinology | 2010

Leptin and ghrelin in anadromous Arctic charr: Cloning and change in expressions during a seasonal feeding cycle

Eirik Frøiland; Koji Murashita; Even H. Jørgensen; Tadahide Kurokawa

Anadromous (sea-migrating) Arctic charr (Salvelinus alpinus) display pronounced seasonal variations in food intake and growth and is an interesting model for studying mechanisms of appetite regulation. In this study cDNAs encoding for ghrelin (GHRL) and leptin (LEP) in Arctic charr were cloned, after which stomach GHRL and liver LEP mRNA expressions were examined by qPCR during a seasonal feeding cycle of semi-wild anadromous Arctic charr. The fish were captured as they returned from summer feeding in seawater and transferred to an indoor tank where they were fed in excess until October the year after. Growth rate was low in late winter, increased in late spring and reached a peak during summer, and then declined during autumn, when the fish became sexually mature. The changes in growth rate were associated with corresponding changes in the proportion of fish that had been eating at each sampling date, and whole body lipid status. Stomach GHRL mRNA expression was high in late winter, decreased to a nadir in mid-summer and increased again to a high level in early autumn. Liver LEP mRNA remained low during winter, spring and early summer, after which there was a gradual, 7-fold increase until October. The seasonal changes in ghrelin and leptin support a role of these hormones in the long-term regulation of energy homeostasis in the anadromous Arctic charr. It cannot be excluded, however, that the increase in liver leptin expression during autumn is related to sexual maturation.


General and Comparative Endocrinology | 2009

Characterization, tissue distribution, and regulation of agouti-related protein (AgRP), cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY) in Atlantic salmon (Salmo salar).

Koji Murashita; Tadahide Kurokawa; Lars O.E. Ebbesson; Sigurd O. Stefansson; Ivar Rønnestad

Key peptide hormones involved in the control of appetite in vertebrates were identified, their genes characterized and their regulation studied in Atlantic salmon: two agouti-related proteins (AgRP), cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY). The AgRP-1 and AgRP-2 genes encode prepro-proteins of 142- and 117-amino acids, respectively. The deduced AgRP-2 protein has 10 cysteine residues in the C-terminal polycysteine domain, while the AgRP-1 lacks the 6th and 7th cysteine residues observed in other species. AgRP-1 was principally expressed in the pituitary and skin, while AgRP-2 was highly expressed in the mid-gut, red muscle and gonads. The CART gene, encoding 118-amino acids, was strongly expressed in the brain and eye. In addition to salmon CART, we identified three to six variants of the CART gene in lower vertebrates by mining available databases. The salmon NPY gene, encoding 100-amino acids, was mainly expressed in the brain and eye. AgRP-1 and CART mRNA levels in the brain decreased after 6 days of fasting while AgRP-2 and NPY showed no significant change, suggesting that AgRP-1 and CART are involved in feeding regulation in Atlantic salmon. The identification of multiple variants of these appetite-regulating genes emphasizes the importance to further investigate the complex regulation of these genes.


Aquaculture | 1996

Formation of the diffuse pancreas and the development of digestive enzyme synthesis in larvae of the Japanese flounder Paralichthys olivaceus

Tadahide Kurokawa; Tohru Suzuki

Abstract The development of the diffuse pancreas and the stage at which the pancreas acquired exocrine function was investigated in larvae of the Japanese flounder Paralichthys olivaceus . The larval primordial pancreas differentiated from the anterior part of intestine at 1 day post-hatching (dph). Pancreatic zymogens were first detected at 2 dph using an anti-eel trypsinogen antibody (anti-eTrg). There was strong staining at 3 dph (first feeding day), and zymogen granules were secreted from the pancreatic glandular cells at 3 dph. These results suggest that the larval pancreas begins to synthesize digestive enzymes at 2 dph, and that enzymes are secreted from 3 dph onwards. The pancreas, which is located at the boundary between the oesophagus and intestine, was a compact organ at 3 dph. It began to elongate posteriorly along veins on the intestine at 20 dph. After metamorphosis (45 dph), the pancreas was localized along the veins running toward the porta hepatis from the stomach, pyloric appendages and intestine. Pancreatic tissue had also begun to invade the liver along the hepatic portal vein, thereby forming a diffuse pancreas. Since the gastric glands of the stomach wall are also differentiated at metamorphosis, it is concluded that the digestive system of the flounder assumes the adult form in the early juvenile stage following metamorphosis.

Collaboration


Dive into the Tadahide Kurokawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge