Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tadao Maeda is active.

Publication


Featured researches published by Tadao Maeda.


Nature Neuroscience | 2004

Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function

Françoise Haeseleer; Yoshikazu Imanishi; Tadao Maeda; Daniel E. Possin; Akiko Maeda; Amy Lee; Fred Rieke; Krzysztof Palczewski

CaBP1–8 are neuronal Ca2+-binding proteins with similarity to calmodulin (CaM). Here we show that CaBP4 is specifically expressed in photoreceptors, where it is localized to synaptic terminals. The outer plexiform layer, which contains the photoreceptor synapses with secondary neurons, was thinner in the Cabp4−/− mice than in control mice. Cabp4−/− retinas also had ectopic synapses originating from rod bipolar and horizontal cells tha HJt extended into the outer nuclear layer. Responses of Cabp4−/− rod bipolars were reduced in sensitivity about 100-fold. Electroretinograms (ERGs) indicated a reduction in cone and rod synaptic function. The phenotype of Cabp4−/− mice shares similarities with that of incomplete congenital stationary night blindness (CSNB2) patients. CaBP4 directly associated with the C-terminal domain of the Cav1.4 α1-subunit and shifted the activation of Cav1.4 to hyperpolarized voltages in transfected cells. These observations indicate that CaBP4 is important for normal synaptic function, probably through regulation of Ca2+ influx and neurotransmitter release in photoreceptor synaptic terminals.


Journal of Biological Chemistry | 2008

Retinopathy in Mice Induced by Disrupted All-trans-retinal Clearance

Akiko Maeda; Tadao Maeda; Marcin Golczak; Krzysztof Palczewski

The visual (retinoid) cycle is a fundamental metabolic process in vertebrate retina responsible for production of 11-cis-retinal, the chromophore of rhodopsin and cone pigments. 11-cis-Retinal is bound to opsins, forming visual pigments, and when the resulting visual chromophore 11-cis-retinylidene is photoisomerized to all-trans-retinylidene, all-trans-retinal is released from these receptors. Toxic byproducts of the visual cycle formed from all-trans-retinal often are associated with lipofuscin deposits in the retinal pigmented epithelium (RPE), but it is not clear whether aberrant reactions of the visual cycle participate in RPE atrophy, leading to a rapid onset of retinopathy. Here we report that mice lacking both the ATP-binding cassette transporter 4 (Abca4) and enzyme retinol dehydrogenase 8 (Rdh8), proteins critical for all-trans-retinal clearance from photoreceptors, developed severe RPE/photoreceptor dystrophy at an early age. This phenotype includes lipofuscin, drusen, and basal laminar deposits, Bruchs membrane thickening, and choroidal neovascularization. Importantly, the severity of visual dysfunction and retinopathy was exacerbated by light but attenuated by treatment with retinylamine, a visual cycle inhibitor that slows the flow of all-trans-retinal through the visual cycle. These findings provide direct evidence that aberrant production of toxic condensation byproducts of the visual cycle in mice can lead to rapid, progressive retinal degeneration.


Nature Biotechnology | 2013

Transcription factor–mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells

Fadi J. Najm; Angela M. Lager; Anita Zaremba; Krysta Wyatt; Andrew V. Caprariello; Daniel C. Factor; Robert T. Karl; Tadao Maeda; Robert H. Miller; Paul J. Tesar

Cell-based therapies for myelin disorders, such as multiple sclerosis and leukodystrophies, require technologies to generate functional oligodendrocyte progenitor cells. Here we describe direct conversion of mouse embryonic and lung fibroblasts to induced oligodendrocyte progenitor cells (iOPCs) using sets of either eight or three defined transcription factors. iOPCs exhibit a bipolar morphology and global gene expression profile consistent with bona fide OPCs. They can be expanded in vitro for at least five passages while retaining the ability to differentiate into multiprocessed oligodendrocytes. When transplanted to hypomyelinated mice, iOPCs are capable of ensheathing host axons and generating compact myelin. Lineage conversion of somatic cells to expandable iOPCs provides a strategy to study the molecular control of oligodendrocyte lineage identity and may facilitate neurological disease modeling and autologous remyelinating therapies.


Journal of Biological Chemistry | 2009

Involvement of All-trans-retinal in Acute Light-induced Retinopathy of Mice

Akiko Maeda; Tadao Maeda; Marcin Golczak; Steven P. Chou; Amar Desai; Charles L. Hoppel; Shigemi Matsuyama; Krzysztof Palczewski

Exposure to bright light can cause visual dysfunction and retinal photoreceptor damage in humans and experimental animals, but the mechanism(s) remain unclear. We investigated whether the retinoid cycle (i.e. the series of biochemical reactions required for vision through continuous generation of 11-cis-retinal and clearance of all-trans-retinal, respectively) might be involved. Previously, we reported that mice lacking two enzymes responsible for clearing all-trans-retinal, namely photoreceptor-specific ABCA4 (ATP-binding cassette transporter 4) and RDH8 (retinol dehydrogenase 8), manifested retinal abnormalities exacerbated by light and associated with accumulation of diretinoid-pyridinium-ethanolamine (A2E), a condensation product of all-trans-retinal and a surrogate marker for toxic retinoids. Now we show that these mice develop an acute, light-induced retinopathy. However, cross-breeding these animals with lecithin:retinol acyltransferase knock-out mice lacking retinoids within the eye produced progeny that did not exhibit such light-induced retinopathy until gavaged with the artificial chromophore, 9-cis-retinal. No significant ocular accumulation of A2E occurred under these conditions. These results indicate that this acute light-induced retinopathy requires the presence of free all-trans-retinal and not, as generally believed, A2E or other retinoid condensation products. Evidence is presented that the mechanism of toxicity may include plasma membrane permeability and mitochondrial poisoning that lead to caspase activation and mitochondria-associated cell death. These findings further understanding of the mechanisms involved in light-induced retinal degeneration.


Journal of Biological Chemistry | 2005

Role of Photoreceptor-specific Retinol Dehydrogenase in the Retinoid Cycle in Vivo

Akiko Maeda; Tadao Maeda; Yoshikazu Imanishi; Vladimir Kuksa; Andrei Alekseev; J. Darin Bronson; Houbin Zhang; Li Zhu; Wenyu Sun; David A. Saperstein; Fred Rieke; Wolfgang Baehr; Krzysztof Palczewski

The retinoid cycle is a recycling system that replenishes the 11-cis-retinal chromophore of rhodopsin and cone pigments. Photoreceptor-specific retinol dehydrogenase (prRDH) catalyzes reduction of all-trans-retinal to all-trans-retinol and is thought to be a key enzyme in the retinoid cycle. We disrupted mouse prRDH (human gene symbol RDH8) gene expression by targeted recombination and generated a homozygous prRDH knock-out (prRDH–/–) mouse. Histological analysis and electron microscopy of retinas from 6- to 8-week-old prRDH–/– mice revealed no structural differences of the photoreceptors or inner retina. For brief light exposure, absence of prRDH did not affect the rate of 11-cis-retinal regeneration or the decay of Meta II, the activated form of rhodopsin. Absence of prRDH, however, caused significant accumulation of all-trans-retinal following exposure to bright lights and delayed recovery of rod function as measured by electroretinograms and single cell recordings. Retention of all-trans-retinal resulted in slight overproduction of A2E, a condensation product of all-trans-retinal and phosphatidylethanolamine. We conclude that prRDH is an enzyme that catalyzes reduction of all-trans-retinal in the rod outer segment, most noticeably at higher light intensities and prolonged illumination, but is not an essential enzyme of the retinoid cycle.


Progress in Retinal and Eye Research | 2003

Rhodopsin phosphorylation: 30 years later

Tadao Maeda; Yoshikazu Imanishi; Krzysztof Palczewski

Phototransduction in vertebrate photoreceptor cells mediated by rhodopsin is one of the most comprehensively examined G protein-coupled receptor (GPCR) signaling pathways. The signal transduction pathway can be mapped from the initial absorption of light to conformational changes within rhodopsin, through activation of the G protein transducin, and to the ultimate closure of the cation cGMP-gated channels in the plasma membrane. Furthermore, phototransduction has become an intensely studied model system for understanding the desensitizing processes that allow reduced non-linear responses of photoreceptor cells to increasing levels of illumination. Although some general themes appear to occur in GPCR systems, the details of these desensitizing processes are likely to be specific to each of the receptors. These differences are attributed to the fact that each receptor has unique kinetic constraints, amplification levels, tolerance to basal constitutive activity, intracellular internalization and recycling, redundancy of isoforms, and morphologies of the cell of their expression. One of the biochemical processes that are believed to be a common part of this desensitization of the GPCR-mediated cascade is receptor phosphorylation catalyzed by members of a small family of the GPCR kinases. The enzymatic, physiological and genetic aspects of rhodopsin phosphorylation and rhodopsin kinase have been characterized extensively over the last 30 yr. However, new structurally based approaches to examining rhodopsin kinase and rhodopsin phosphorylation are still awaiting further investigations. We present here a summary of the current understanding of rhodopsin phosphorylation and the properties of rhodopsin kinase, along with some expectations of future investigations into these topics.


Journal of Biological Chemistry | 2007

The Function of Guanylate Cyclase 1 and Guanylate Cyclase 2 in Rod and Cone Photoreceptors

Wolfgang Baehr; Sukanya Karan; Tadao Maeda; Dong Gen Luo; Sha Li; J. Darin Bronson; Carl B. Watt; King Wai Yau; Jeanne M. Frederick; Krzysztof Palczewski

Retinal guanylate cyclases 1 and 2 (GC1 and GC2) are responsible for synthesis of cyclic GMP in rods and cones, but their individual contributions to phototransduction are unknown. We report here that the deletion of both GC1 and GC2 rendered rod and cone photoreceptors nonfunctional and unstable. In the rod outer segments of GC double knock-out mice, guanylate cyclase-activating proteins 1 and 2, and cyclic GMP phosphodiesterase were undetectable, although rhodopsin and transducin α-subunit were mostly unaffected. Outer segment membranes of GC1–/– and GC double knock-out cones were destabilized and devoid of cone transducin (α- and γ-subunits), cone phosphodiesterase, and G protein-coupled receptor kinase 1, whereas cone pigments were present at reduced levels. Real time reverse transcription-PCR analyses demonstrated normal RNA transcript levels for the down-regulated proteins, indicating that down-regulation is posttranslational. We interpret these results to demonstrate an intrinsic requirement of GCs for stability and/or transport of a set of membrane-associated phototransduction proteins.


Journal of Biological Chemistry | 2011

Probing Mechanisms of Photoreceptor Degeneration in a New Mouse Model of the Common Form of Autosomal Dominant Retinitis Pigmentosa due to P23H Opsin Mutations

Sanae Sakami; Tadao Maeda; Grzegorz Bereta; Kiichiro Okano; Marcin Golczak; Alexander Sumaroka; Alejandro J. Roman; Artur V. Cideciyan; Samuel G. Jacobson; Krzysztof Palczewski

Rhodopsin, the visual pigment mediating vision under dim light, is composed of the apoprotein opsin and the chromophore ligand 11-cis-retinal. A P23H mutation in the opsin gene is one of the most prevalent causes of the human blinding disease, autosomal dominant retinitis pigmentosa. Although P23H cultured cell and transgenic animal models have been developed, there remains controversy over whether they fully mimic the human phenotype; and the exact mechanism by which this mutation leads to photoreceptor cell degeneration remains unknown. By generating P23H opsin knock-in mice, we found that the P23H protein was inadequately glycosylated with levels 1–10% that of wild type opsin. Moreover, the P23H protein failed to accumulate in rod photoreceptor cell endoplasmic reticulum but instead disrupted rod photoreceptor disks. Genetically engineered P23H mice lacking the chromophore showed accelerated photoreceptor cell degeneration. These results indicate that most synthesized P23H protein is degraded, and its retinal cytotoxicity is enhanced by lack of the 11-cis-retinal chromophore during rod outer segment development.


Journal of Biological Chemistry | 2012

Mechanism of All-trans-retinal Toxicity with Implications for Stargardt Disease and Age-related Macular Degeneration

Yu Chen; Kiichiro Okano; Tadao Maeda; Vishal Chauhan; Marcin Golczak; Akiko Maeda; Krzysztof Palczewski

Background: High levels of all-trans-retinal (atRAL) are associated with photoreceptor degeneration. Results: atRAL promotes NADPH oxidase-mediated overproduction of intracellular reactive oxygen species. Conclusion: A cascade of signaling events is demonstrated to underlie the action of atRAL in photoreceptor degeneration in mice. Significance: Mechanistic elucidation of atRAL-mediated photoreceptor degeneration is essential for understanding the molecular pathogenesis of Stargardt disease and other types of retinal degeneration. Compromised clearance of all-trans-retinal (atRAL), a component of the retinoid cycle, increases the susceptibility of mouse retina to acute light-induced photoreceptor degeneration. Abca4−/−Rdh8−/− mice featuring defective atRAL clearance were used to examine the one or more underlying molecular mechanisms, because exposure to intense light causes severe photoreceptor degeneration in these animals. Here we report that bright light exposure of Abca4−/−Rdh8−/− mice increased atRAL levels in the retina that induced rapid NADPH oxidase-mediated overproduction of intracellular reactive oxygen species (ROS). Moreover, such ROS generation was inhibited by blocking phospholipase C and inositol 1,4,5-trisphosphate-induced Ca2+ release, indicating that activation occurs upstream of NADPH oxidase-mediated ROS generation. Because multiple upstream G protein-coupled receptors can activate phospholipase C, we then tested the effects of antagonists of serotonin 2A (5-HT2AR) and M3-muscarinic (M3R) receptors and found they both protected Abca4−/−Rdh8−/− mouse retinas from light-induced degeneration. Thus, a cascade of signaling events appears to mediate the toxicity of atRAL in light-induced photoreceptor degeneration of Abca4−/−Rdh8−/− mice. A similar mechanism may be operative in human Stargardt disease and age-related macular degeneration.


Nature Chemical Biology | 2012

Primary amines protect against retinal degeneration in mouse models of retinopathies

Akiko Maeda; Marcin Golczak; Yu Chen; Kiichiro Okano; Hideo Kohno; Satomi Shiose; Kaede Ishikawa; William E. Harte; Grazyna Palczewska; Tadao Maeda; Krzysztof Palczewski

Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore, 11-cis-retinal, and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomered product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing FDA-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by mass spectrometry. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that displays features of Stargardt’s and age-related retinal degeneration.

Collaboration


Dive into the Tadao Maeda's collaboration.

Top Co-Authors

Avatar

Akiko Maeda

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Krzysztof Palczewski

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Ohguro

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar

Marcin Golczak

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Kiichiro Okano

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Ikuyo Maruyama

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar

Yu Chen

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Hideo Kohno

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Grazyna Palczewska

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Yoshikazu Imanishi

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge