Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tadashi Honda is active.

Publication


Featured researches published by Tadashi Honda.


Journal of Biological Chemistry | 2010

An Exceptionally Potent Inducer of Cytoprotective Enzymes ELUCIDATION OF THE STRUCTURAL FEATURES THAT DETERMINE INDUCER POTENCY AND REACTIVITY WITH Keap1

Albena T. Dinkova-Kostova; Paul Talalay; John Sharkey; Ying Zhang; W. David Holtzclaw; Xiu Jun Wang; Emilie David; Katherine H. Schiavoni; Stewart Finlayson; Dale F. Mierke; Tadashi Honda

The Keap1/Nrf2/ARE pathway controls a network of cytoprotective genes that defend against the damaging effects of oxidative and electrophilic stress, and inflammation. Induction of this pathway is a highly effective strategy in combating the risk of cancer and chronic degenerative diseases, including atherosclerosis and neurodegeneration. An acetylenic tricyclic bis(cyano enone) bearing two highly electrophilic Michael acceptors is an extremely potent inducer in cells and in vivo. We demonstrate spectroscopically that both cyano enone functions of the tricyclic molecule react with cysteine residues of Keap1 and activate transcription of cytoprotective genes. Novel monocyclic cyano enones, representing fragments of rings A and C of the tricyclic compound, reveal that the contribution to inducer potency of the ring C Michael acceptor is much greater than that of ring A, and that potency is further enhanced by spatial proximity of an acetylenic function. Critically, the simultaneous presence of two cyano enone functions in rings A and C within a rigid three-ring system results in exceptionally high inducer potency. Detailed understanding of the structural elements that contribute to the reactivity with the protein sensor Keap1 and to high potency of induction is essential for the development of specific and selective lead compounds as clinically relevant chemoprotective agents.


Journal of Medicinal Chemistry | 2012

Synthesis, Chemical Reactivity as Michael Acceptors, and Biological Potency of Monocyclic Cyanoenones, Novel and Highly Potent Anti-inflammatory and Cytoprotective Agents(1)

Suqing Zheng; Y. R. Santosh Laxmi; Emilie David; Albena T. Dinkova-Kostova; Katherine H. Shiavoni; Yanqing Ren; Ying Zheng; Isaac Trevino; Ronald Bumeister; Iwao Ojima; W. Christian Wigley; James B. Bliska; Dale F. Mierke; Tadashi Honda

Novel monocyclic cyanoenones examined to date display unique features regarding chemical reactivity as Michael acceptors and biological potency. Remarkably, in some biological assays, the simple structure is more potent than pentacyclic triterpenoids (e.g., CDDO and bardoxolone methyl) and tricycles (e.g., TBE-31). Among monocyclic cyanoenones, 1 is a highly reactive Michael acceptor with thiol nucleophiles. Furthermore, an important feature of 1 is that its Michael addition is reversible. For the inhibition of NO production, 1 shows the highest potency. Notably, its potency is about three times higher than CDDO, whose methyl ester (bardoxolone methyl) is presently in phase III clinical trials. For the induction of NQO1, 1 also demonstrated the highest potency. These results suggest that the reactivity of these Michael acceptors is closely related to their biological potency. Interestingly, in LPS-stimulated macrophages, 1 causes apoptosis and inhibits secretion of TNF-α and IL-1β with potencies that are higher than those of bardoxolone methyl and TBE-31.


Cancer Prevention Research | 2015

Nrf2 activation protects against solar-simulated ultraviolet radiation in mice and humans

Elena V. Knatko; Sally H. Ibbotson; Ying Zhang; Maureen Higgins; Jed W. Fahey; Paul Talalay; R.S. Dawe; J. Ferguson; Jeffrey T.-J. Huang; Rosemary G. Clarke; Suqing Zheng; Akira Saito; Sukirti Kalra; Andrea L. Benedict; Tadashi Honda; Charlotte M. Proby; Albena T. Dinkova-Kostova

The transcription factor Nrf2 determines the ability to adapt and survive under conditions of electrophilic, oxidative, and inflammatory stress by regulating the expression of elaborate networks comprising nearly 500 genes encoding proteins with versatile cytoprotective functions. In mice, disruption of Nrf2 increases susceptibility to carcinogens and accelerates disease pathogenesis. Paradoxically, Nrf2 is upregulated in established human tumors, but whether this upregulation drives carcinogenesis is not known. Here we show that the incidence, multiplicity, and burden of solar-simulated UV radiation–mediated cutaneous tumors that form in SKH-1 hairless mice in which Nrf2 is genetically constitutively activated are lower than those that arise in their wild-type counterparts. Pharmacologic Nrf2 activation by topical biweekly applications of small (40 nmol) quantities of the potent bis(cyano enone) inducer TBE-31 has a similar protective effect against solar-simulated UV radiation in animals receiving long-term treatment with the immunosuppressive agent azathioprine. Genetic or pharmacologic Nrf2 activation lowers the expression of the pro-inflammatory factors IL6 and IL1β, and COX2 after acute exposure of mice to UV radiation. In healthy human subjects, topical applications of extracts delivering the Nrf2 activator sulforaphane reduced the degree of solar-simulated UV radiation–induced skin erythema, a quantifiable surrogate endpoint for cutaneous damage and skin cancer risk. Collectively, these data show that Nrf2 is not a driver for tumorigenesis even upon exposure to a very potent and complete carcinogen and strongly suggest that the frequent activation of Nrf2 in established human tumors is a marker of metabolic adaptation. Cancer Prev Res; 8(6); 475–86. ©2015 AACR.


Angewandte Chemie | 2016

In Situ Observation of Thiol Michael Addition to a Reversible Covalent Drug in a Crystalline Sponge

Vincent Duplan; Manabu Hoshino; Wei Li; Tadashi Honda; Makoto Fujita

A reversible Michael addition reaction between thiol nucleophiles and cyanoenones has been previously postulated to be the mechanism-of-action of a new family of reversible covalent drugs. However, the hypothetical Michael adducts in this mechanism have only been detected by spectroscopic methods in solution. Herein, the crystallographic observation of reversible Michael addition with a potent cyanoenone drug candidate by means of the crystalline-sponge method is reported. After inclusion of the cyanoenone substrate, the sponge crystal was treated with a thiol solution. Subsequent crystallographic analysis confirmed the single-crystal-to-single-crystal transformation of the substrate into the impermanent Michael adduct.


Pharmacological Research | 2015

Targeting lipid peroxidation and mitochondrial imbalance in Friedreich's ataxia

Rosella Abeti; Ebru Uzun; Indhushri Renganathan; Tadashi Honda; Mark A. Pook; Paola Giunti

Friedreichs ataxia (FRDA) is an autosomal recessive disorder, caused by reduced levels of the protein frataxin. This protein is located in the mitochondria, where it functions in the biogenesis of iron-sulphur clusters (ISCs), which are important for the function of the mitochondrial respiratory chain complexes. Moreover, disruption in iron biogenesis may lead to oxidative stress. Oxidative stress can be the cause and/or the consequence of mitochondrial energy imbalance, leading to cell death. Fibroblasts from two FRDA mouse models, YG8R and KIKO, were used to analyse two different categories of protective compounds: deuterised poly-unsaturated fatty acids (dPUFAs) and Nrf2-inducers. The former have been shown to protect the cell from damage induced by lipid peroxidation and the latter trigger the well-known Nrf2 antioxidant pathway. Our results show that the sensitivity to oxidative stress of YG8R and KIKO mouse fibroblasts, resulting in cell death and lipid peroxidation, can be prevented by d4-PUFA and Nrf2-inducers (SFN and TBE-31). The mitochondrial membrane potential (ΔΨm) of YG8R and KIKO fibroblasts revealed a difference in their mitochondrial pathophysiology, which may be due to the different genetic basis of the two models. This suggests that variable levels of reduced frataxin may act differently on mitochondrial pathophysiology and that these two cell models could be useful in recapitulating the observed differences in the FRDA phenotype. This may reflect a different modulatory effect towards cell death that will need to be investigated further.


Cancer Prevention Research | 2012

Highly Potent Activation of Nrf2 by Topical Tricyclic Bis(Cyano Enone): Implications for Protection against UV Radiation during Thiopurine Therapy

Sukirti Kalra; Elena V. Knatko; Ying Zhang; Tadashi Honda; Masayuki Yamamoto; Albena T. Dinkova-Kostova

Chronic treatment with azathioprine, a highly effective anti-inflammatory and immunosuppressive agent, profoundly increases the risk for development of unusually aggressive cutaneous squamous cell carcinoma. Its ultimate metabolite, 6-thioguanine (6-TG) nucleotide, is incorporated in DNA of skin cells, and upon exposure to UVA radiation, causes oxidative stress, followed by damage of DNA and associated proteins. The acetylenic tricyclic bis(cyano enone) TBE-31 is a strong inhibitor of inflammation and a potent inducer of the Keap1/Nrf2/ARE pathway, which orchestrates the expression of a large network of cytoprotective genes. We now report that long-term (five days per week for four weeks) topical daily applications of small (200 nmol) quantities of TBE-31 cause a robust systemic induction of the Keap1/Nrf2/ARE pathway and decreases the 6-TG incorporation in DNA of skin, blood, and liver of azathioprine-treated mice, indicating extraordinary bioavailability and efficacy. In addition, TBE-31, at nanomolar concentrations, protects cells with 6-TG in their genomic DNA against oxidative stress caused by UVA radiation through induction of the Keap1/Nrf2/ARE pathway. At the same 6-TG DNA levels, Keap1-knockout cells, in which the pathway is constitutively upregulated, are highly resistant to UVA radiation–induced oxidative stress. The protective effects of both the Keap1-knockout genotype and TBE-31 are completely lost in the absence of transcription factor Nrf2. Our findings suggest that compounds of this kind are excellent candidates for mechanism-based chemoprotective agents against conditions in which oxidative stress and inflammation underlie disease pathogenesis. Moreover, their potential skin patch incorporation for transdermal delivery is an exciting possibility. Cancer Prev Res; 5(7); 973–81. ©2012 AACR.


Journal of Medicinal Chemistry | 2015

New Monocyclic, Bicyclic, and Tricyclic Ethynylcyanodienones as Activators of the Keap1/Nrf2/ARE Pathway and Inhibitors of Inducible Nitric Oxide Synthase

Wei Li; Suqing Zheng; Maureen Higgins; Rocco P. Morra; Anne T. Mendis; Chih Wei Chien; Iwao Ojima; Dale F. Mierke; Albena T. Dinkova-Kostova; Tadashi Honda

A monocyclic compound 3 (3-ethynyl-3-methyl-6-oxocyclohexa-1,4-dienecarbonitrile) is a highly reactive Michael acceptor leading to reversible adducts with nucleophiles, which displays equal or greater potency than the pentacyclic triterpenoid CDDO in inflammation and carcinogenesis related assays. Recently, reversible covalent drugs, which bind with protein targets but not permanently, have been gaining attention because of their unique features. To explore such reversible covalent drugs, we have synthesized monocyclic, bicyclic, and tricyclic compounds containing 3 as an electrophilic fragment and evaluated them as activators of the Keap1/Nrf2/ARE pathway and inhibitors of iNOS. Notably, these compounds maintain the unique features of the chemical reactivity and biological potency of 3. Among them, a monocyclic compound 5 is the most potent in these assays while a tricyclic compound 14 displays a more robust and specific activation profile compared to 5. In conclusion, we demonstrate that 3 is a useful electrophilic fragment for exploring reversible covalent drugs.


Cellular and molecular gastroenterology and hepatology | 2017

Experimental Nonalcoholic Steatohepatitis and Liver Fibrosis Are Ameliorated by Pharmacologic Activation of Nrf2 (NF-E2 p45-Related Factor 2)

Ritu S. Sharma; David J. Harrison; Dorothy Kisielewski; Diane Cassidy; Alison D. McNeilly; Jennifer Gallagher; Shaun V. Walsh; Tadashi Honda; Rory J. McCrimmon; Albena T. Dinkova-Kostova; Michael L.J. Ashford; John F. Dillon; John D. Hayes

Background & Aims Nonalcoholic steatohepatitis (NASH) is associated with oxidative stress. We surmised that pharmacologic activation of NF-E2 p45-related factor 2 (Nrf2) using the acetylenic tricyclic bis(cyano enone) TBE-31 would suppress NASH because Nrf2 is a transcriptional master regulator of intracellular redox homeostasis. Methods Nrf2+/+ and Nrf2-/- C57BL/6 mice were fed a high-fat plus fructose (HFFr) or regular chow diet for 16 weeks or 30 weeks, and then treated for the final 6 weeks, while still being fed the same HFFr or regular chow diets, with either TBE-31 or dimethyl sulfoxide vehicle control. Measures of whole-body glucose homeostasis, histologic assessment of liver, and biochemical and molecular measurements of steatosis, endoplasmic reticulum (ER) stress, inflammation, apoptosis, fibrosis, and oxidative stress were performed in livers from these animals. Results TBE-31 treatment reversed insulin resistance in HFFr-fed wild-type mice, but not in HFFr-fed Nrf2-null mice. TBE-31 treatment of HFFr-fed wild-type mice substantially decreased liver steatosis and expression of lipid synthesis genes, while increasing hepatic expression of fatty acid oxidation and lipoprotein assembly genes. Also, TBE-31 treatment decreased ER stress, expression of inflammation genes, and markers of apoptosis, fibrosis, and oxidative stress in the livers of HFFr-fed wild-type mice. By comparison, TBE-31 did not decrease steatosis, ER stress, lipogenesis, inflammation, fibrosis, or oxidative stress in livers of HFFr-fed Nrf2-null mice. Conclusions Pharmacologic activation of Nrf2 in mice that had already been rendered obese and insulin resistant reversed insulin resistance, suppressed hepatic steatosis, and mitigated against NASH and liver fibrosis, effects that we principally attribute to inhibition of ER, inflammatory, and oxidative stress.


European Journal of Pharmacology | 2016

Antidepressant effects of TBE-31 and MCE-1, the novel Nrf2 activators, in an inflammation model of depression

Wei Yao; Ji-chun Zhang; Tamaki Ishima; Qian Ren; Chun Yang; Chao Dong; Min Ma; Akira Saito; Tadashi Honda; Kenji Hashimoto

The Nuclear factor (erythroid 2-derived)-like 2 (Nrf2) plays a key role in inflammation which is implicated in the pathophysiology of depression. The Nrf2 activators have antidepressant effects in animal models of depression. The present study was undertaken to examine whether TBE-31 [(±)-(4bS,8aR,10aS)-10a-ethynyl-4b,8,8-trimethyl-3,7-dioxo-3,4b,7,8,8a,9,10,10a-octahydrophenanthrene-2,6-dicarbonitrile] and MCE-1 [(±)-3-ethynyl-3-methyl-6-oxocyclohexa-1,4-dienecarbonitrile], the novel Nrf2 activators, could show antidepressant effects in inflammation model of depression. We found that TBE-31 and MCE-1 significantly potentiated nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells, in a concentration dependent manner. The Nrf2 siRNA, but not negative control of siRNA, significantly blocked the potentiating effects of TBE-31 and MCE-1 on neurite outgrowth in PC12 cells. Furthermore, oral administration of TBE-31 or MCE-1 significantly attenuated an increase in serum levels of tumor necrosis factor-α (TNF-α) after administration of lipopolysaccharide (LPS: 0.5mg/kg). In the tail-suspension test and forced swimming test, oral administration of TBE-31 or MCE-1 significantly attenuated an increase in the immobility time after LPS (0.5mg/kg) administration. These findings suggest that the novel Nrf2 activators such as TBE-31 and MCE-1 might be potential therapeutic drugs for inflammation-related depression.


British Journal of Cancer | 2016

Aldo-keto reductases are biomarkers of NRF2 activity and are co-ordinately overexpressed in non-small cell lung cancer

A. Kenneth MacLeod; Lourdes P Acosta-Jimenez; Philip J. Coates; Michael McMahon; Frank A Carey; Tadashi Honda; John D. Hayes; Colin J. Henderson; C. Roland Wolf

This corrects the article DOI: 10.1038/bjc.2016.363

Collaboration


Dive into the Tadashi Honda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akira Saito

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar

Iwao Ojima

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Li

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar

Eddie Chan

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge