Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tadasuke Naito is active.

Publication


Featured researches published by Tadasuke Naito.


Journal of Virology | 2007

Involvement of Hsp90 in Assembly and Nuclear Import of Influenza Virus RNA Polymerase Subunits

Tadasuke Naito; Fumitaka Momose; Atsushi Kawaguchi; Kyosuke Nagata

ABSTRACT Transcription and replication of the influenza virus RNA genome occur in the nuclei of infected cells through the viral RNA-dependent RNA polymerase consisting of PB1, PB2, and PA. We previously identified a host factor designated RAF-1 (RNA polymerase activating factor 1) that stimulates viral RNA synthesis. RAF-1 is found to be identical to Hsp90. Here, we examined the intracellular localization of Hsp90 and viral RNA polymerase subunits and their molecular interaction. Hsp90 was found to interact with PB2 and PB1, and it was relocalized to the nucleus upon viral infection. We found that the nuclear transport of Hsp90 occurs in cells expressing PB2 alone. The nuclear transport of Hsp90 was in parallel with that of the viral RNA polymerase binary complexes, either PB1 and PB2 or PB1 and PA, as well as with that of PB2 alone. Hsp90 also interacted with the binary RNA polymerase complex PB1-PB2, and it was dissociated from the PB1-PB2 complex upon its association with PA. Furthermore, Hsp90 could form a stable PB1-PB2-Hsp90 complex prior to the formation of a ternary polymerase complex by the assembly of PA in the infected cells. These results suggest that Hsp90 is involved in the assembly and nuclear transport of viral RNA polymerase subunits, possibly as a molecular chaperone for the polymerase subunits prior to the formation of a mature ternary polymerase complex.


Journal of Virology | 2005

Involvement of Influenza Virus PA Subunit in Assembly of Functional RNA Polymerase Complexes

Atsushi Kawaguchi; Tadasuke Naito; Kyosuke Nagata

ABSTRACT The RNA-dependent RNA polymerase of influenza virus consists of three subunits, PB1, PB2, and PA, and synthesizes three kinds of viral RNAs, vRNA, cRNA, and mRNA. PB1 is a catalytic subunit; PB2 recognizes the cap structure for generation of the primer for transcription; and PA is thought to be involved in viral RNA replication. However, the process of polymerase complex assembly and the exact nature of polymerase complexes involved in synthesis of the three different RNA species are not yet clear. ts53 virus is a temperature-sensitive (ts) mutant derived from A/WSN/33 (A. Sugiura, M. Ueda, K. Tobita, and C. Enomoto, Virology 65:363-373, 1975). We confirmed that the mRNA synthesis level of ts53 remains unaffected at the nonpermissive temperature, whereas vRNA synthesis is largely reduced. Sequencing of the gene encoding ts53 PA and recombinant virus rescue experiments revealed that an amino acid change from Leu to Pro at amino acid position 226 is causative of temperature sensitivity. By glycerol density gradient analyses of nuclear extracts prepared from wild-type virus-infected cells, we found that polymerase proteins sediment in three fractions: one (H fraction) consists of RNP complexes, another (M fraction) contains active polymerases but not viral RNA, and the other (L fraction) contains inactive forms of polymerases. Pulse-chase experiments showed that polymerases in the L fraction are converted to those in the M fraction. In ts53-infected cells, polymerases accumulated in the L fraction. These results strongly suggest that PA is involved in the assembly of functional viral RNA polymerase complexes from their inactive intermediates.


Reviews in Medical Virology | 2008

Host factors for replication and transcription of the influenza virus genome

Kyosuke Nagata; Atsushi Kawaguchi; Tadasuke Naito

For replication and transcription of the influenza virus genome of eight‐segmented and negative‐stranded RNAs, not only viral factors but also host‐derived cellular factors (host factors) are required. This paper focuses on the identification and characterisation of the host factors involved in replication and transcription of the influenza virus genome, reviewing recent progresses in the related molecular mechanisms. Functional assay systems for screening of host factors using cell‐free reconstitution systems and an yeast‐based influenza virus replicon system are highlighted. We have summarised the property of host factors comprehensively and provided a clue for the perspective in the determination mechanism of host range and virulence and the development of a new strategy to control the influenza virus. Copyright


Proceedings of the National Academy of Sciences of the United States of America | 2007

An influenza virus replicon system in yeast identified Tat-SF1 as a stimulatory host factor for viral RNA synthesis

Tadasuke Naito; Yoshihiko Kiyasu; Kenji Sugiyama; Ayumi Kimura; Ryosuke Nakano; Akio Matsukage; Kyosuke Nagata

Influenza viruses infect vertebrates, including mammals and birds. Influenza virus reverse-genetics systems facilitate the study of the structure and function of viral factors. In contrast, less is known about host factors involved in the replication process. Here, we developed a replication and transcription system of the negative-strand RNA genome of the influenza virus in Saccharomyces cerevisiae, which depends on viral RNAs, viral RNA polymerases, and nucleoprotein (NP). Disruption of SUB2 encoding an orthologue of human RAF-2p48/UAP56, a previously identified viral RNA synthesis stimulatory host factor, resulted in reduction of the viral RNA synthesis rate. Using a genome-wide set of yeast single-gene deletion strains, we found several host factor candidates affecting viral RNA synthesis. We found that among them, Tat-SF1, a mammalian homologue of yeast CUS2, was a stimulatory host factor in influenza virus RNA synthesis. Tat-SF1 interacted with free NP, but not with NP associated with RNA, and facilitated formation of RNA-NP complexes. These results suggest that Tat-SF1 may function as a molecular chaperone for NP, as does RAF-2p48/UAP56. This system has proven useful for further studies on the mechanism of influenza virus genome replication and transcription.


Journal of Interferon and Cytokine Research | 2011

Interferon-Inducible Antiviral Protein MxA Enhances Cell Death Triggered by Endoplasmic Reticulum Stress

Akiko Numajiri Haruki; Tadasuke Naito; Tomomi Nishie; Shoko Saito; Kyosuke Nagata

Human myxovirus resistance gene A (MxA) is a type I interferon-inducible protein and exhibits the antiviral activity against a variety of RNA viruses, including influenza virus. Previously, we reported that MxA accelerates cell death of influenza virus-infected cells through caspase-dependent and -independent mechanisms. Similar to other viruses, influenza virus infection induces endoplasmic reticulum (ER) stress, which is one of cell death inducers. Here, we have demonstrated that MxA enhances ER stress signaling in cells infected with influenza virus. ER stress-induced events, such as expression of BiP mRNA and processing of XBP1 mRNA, were upregulated in cells expressing MxA by treatment with an ER stress inducer, tunicamycin (TM), as well as influenza virus infection. TM-induced cell death was also accelerated by MxA. Furthermore, we showed that MxA interacts with BiP and overexpression of BiP reduces MxA-promoted ER stress signaling. Because cell death in virus-infected cells is one of ultimate anti-virus mechanisms, we propose that MxA-enhanced ER stress signaling is a part of the antiviral activity of MxA by accelerating cell death.


Molecular Immunology | 2009

Molecular cloning and characterization of porcine Mx2 gene.

Takeya Morozumi; Tadasuke Naito; Pham Doan Lan; Emiko Nakajima; Tadayoshi Mitsuhashi; Satoshi Mikawa; Takeshi Hayashi; Takashi Awata; Hirohide Uenishi; Kyosuke Nagata; Tomomasa Watanabe; Noriyuki Hamasima

Mx, an interferon-inducible protein, is found in various vertebrates and confers resistance to several RNA viruses. At least two Mx proteins occur in vertebrates, and these proteins are key components of innate defense against viral infection. In mice and humans, the two Mx genes have different antiviral activities. Both Mx1 and Mx2 have also been detected in pigs, although only a partial sequence of porcine Mx2 has been reported, and there is no information on its antiviral activity. Here, we report the structure of the intact porcine Mx2 gene having an open reading frame of 2136 bp. We also determined the sequence of the genomic region containing the entire porcine Mx2 gene in addition to Mx1 gene. A weak constitutive expression of porcine Mx2 mRNA and endogenous Mx2 protein was observed in interferon-untreated cells. Porcine endogenous Mx2 protein showed nuclear localization. Furthermore, assays using NIH3T3 cells transfected with Mx genes showed that porcine Mx2 possessed antiviral activity against influenza, although this activity was lower than that of human MxA. This report is the first to describe the intact porcine Mx2 gene, which is a functional gene that may play a key role in the clearance of viruses in pigs.


Scientific Reports | 2017

Influenza A virus hemagglutinin and neuraminidase act as novel motile machinery

Tatsuya Sakai; Shin I. Nishimura; Tadasuke Naito; Mineki Saito

Influenza A virus (IAV) membrane proteins hemagglutinin (HA) and neuraminidase (NA) are determinants of virus infectivity, transmissibility, pathogenicity, host specificity, and major antigenicity. HA binds to a virus receptor, a sialoglycoprotein or sialoglycolipid, on the host cell and mediates virus attachment to the cell surface. The hydrolytic enzyme NA cleaves sialic acid from viral receptors and accelerates the release of progeny virus from host cells. In this study, we identified a novel function of HA and NA as machinery for viral motility. HAs exchanged binding partner receptors iteratively, generating virus movement on a receptor-coated glass surface instead of a cell surface. The virus movement was also dependent on NA. Virus movement mediated by HA and NA resulted in a three to four-fold increase in virus internalisation by cultured cells. We concluded that cooperation of HA and NA moves IAV particles on a cell surface and enhances virus infection of host cells.


Journal of Virology | 2017

Pre-mRNA Processing Factor Prp18 Is a Stimulatory Factor of Influenza Virus RNA Synthesis and Possesses Nucleoprotein Chaperone Activity

M. Minakuchi; Kenji Sugiyama; Y. Kato; Tadasuke Naito; Mitsuru Okuwaki; Atsushi Kawaguchi; Kyosuke Nagata

ABSTRACT The genome of influenza virus (viral RNA [vRNA]) is associated with the nucleoprotein (NP) and viral RNA-dependent RNA polymerases and forms helical viral ribonucleoprotein (vRNP) complexes. The NP-vRNA complex is the biologically active template for RNA synthesis by the viral polymerase. Previously, we identified human pre-mRNA processing factor 18 (Prp18) as a stimulatory factor for viral RNA synthesis using a Saccharomyces cerevisiae replicon system and a single-gene deletion library of Saccharomyces cerevisiae (T. Naito, Y. Kiyasu, K. Sugiyama, A. Kimura, R. Nakano, A. Matsukage, and K. Nagata, Proc Natl Acad Sci USA, 104:18235–18240, 2007, https://doi.org/10.1073/pnas.0705856104 ). In infected Prp18 knockdown (KD) cells, the synthesis of vRNA, cRNA, and viral mRNAs was reduced. Prp18 was found to stimulate in vitro viral RNA synthesis through its interaction with NP. Analyses using in vitro RNA synthesis reactions revealed that Prp18 dissociates newly synthesized RNA from the template after the early elongation step to stimulate the elongation reaction. We found that Prp18 functions as a chaperone for NP to facilitate the formation of NP-RNA complexes. Based on these results, it is suggested that Prp18 accelerates influenza virus RNA synthesis as an NP chaperone for the processive elongation reaction. IMPORTANCE Templates for viral RNA synthesis of negative-stranded RNA viruses are not naked RNA but rather RNA encapsidated by viral nucleocapsid proteins forming vRNP complexes. However, viral basic proteins tend to aggregate under physiological ionic strength without chaperones. We identified the pre-mRNA processing factor Prp18 as a stimulatory factor for influenza virus RNA synthesis. We found that one of the targets of Prp18 is NP. Prp18 facilitates the elongation reaction of viral polymerases by preventing the deleterious annealing of newly synthesized RNA to the template. Prp18 functions as a chaperone for NP to stimulate the formation of NP-RNA complexes. Based on these results, we propose that Prp18 may be required to maintain the structural integrity of vRNP for processive template reading.


BMC Infectious Diseases | 2016

Re-emergence of H3N2 strains carrying potential neutralizing mutations at the N-linked glycosylation site at the hemagglutinin head, post the 2009 H1N1 pandemic

Hiroshi Ushirogawa; Tadasuke Naito; Hirotoshi Tokunaga; Toshihiro Tanaka; Takashi Nakano; Kihei Terada; Masanobu Ohuchi; Mineki Saito

BackgroundSeasonally prevalent H1N1 and H3N2 influenza A viruses have evolved by antigenic drift; this evolution has resulted in the acquisition of asparagine (N)-linked glycosylation sites (NGSs) in the globular head of hemagglutinin (HA), thereby affecting the antigenic and receptor-binding properties, as well as virulence. An epidemiological survey indicated that although the traditional seasonal H1N1 strain had disappeared, H3N2 became predominant again in the seasons (2010–11 and 2011–12) immediately following the H1N1 pandemic of 2009. Interestingly, although the 2009 pandemic H1N1 strain (H1N1pdm09) lacks additional NGSs, clinically isolated H3N2 strains obtained during these seasons gained N (Asn) residues at positions 45 and 144 of HA that forms additional NGSs.MethodsTo investigate whether these NGSs are associated with re-emergence of H3N2 within the subtype, we tested the effect of amino acid substitutions on neutralizing activity by using the antisera raised against H3N2 strains with or without additional NGSs. Furthermore, because the N residue at position 144 of HA was identified as the site of mismatch between the vaccine and epidemic strains of 2011–2012, we generated mutant viruses by reverse genetics and tested the functional importance of this particular NGS for antibody-mediated neutralization by intranasal inoculation of mice.ResultsThe results indicated that amino acid substitution at residue 144 significantly affected neutralization activity, acting as an escape mutation.ConclusionsOur data suggest that the newly acquired NGSs in the HA globular head may play an important role in the re-emergence of endemic seasonal H3N2 strain by aiding the escape from humoral immunity.


Journal of Virology | 2017

Generation of a Genetically Stable High-Fidelity Influenza Vaccine Strain

Tadasuke Naito; Kotaro Mori; Hiroshi Ushirogawa; Naoki Takizawa; Eri Nobusawa; Takato Odagiri; Masato Tashiro; Ryosuke L. Ohniwa; Kyosuke Nagata; Mineki Saito

ABSTRACT Vaccination is considered the most effective preventive means for influenza control. The development of a master virus with high growth and genetic stability, which may be used for the preparation of vaccine viruses by gene reassortment, is crucial for the enhancement of vaccine performance and efficiency of production. Here, we describe the generation of a high-fidelity and high-growth influenza vaccine master virus strain with a single V43I amino acid change in the PB1 polymerase of the high-growth A/Puerto Rico/8/1934 (PR8) master virus. The PB1-V43I mutation was introduced to increase replication fidelity in order to design an H1N1 vaccine strain with a low error rate. The PR8-PB1-V43I virus exhibited good replication compared with that of the parent PR8 virus. In order to compare the efficiency of egg adaptation and the occurrence of gene mutations leading to antigenic alterations, we constructed 6:2 genetic reassortant viruses between the A(H1N1)pdm09 and the PR8-PB1-V43I viruses; hemagglutinin (HA) and neuraminidase (NA) were from the A(H1N1)pdm09 virus, and the other genes were from the PR8 virus. Mutations responsible for egg adaptation mutations occurred in the HA of the PB1-V43I reassortant virus during serial egg passages; however, in contrast, antigenic mutations were introduced into the HA gene of the 6:2 reassortant virus possessing the wild-type PB1. This study shows that the mutant PR8 virus possessing the PB1 polymerase with the V43I substitution may be utilized as a master virus for the generation of high-growth vaccine viruses with high polymerase fidelity, low error rates of gene replication, and reduced antigenic diversity during virus propagation in eggs for vaccine production. IMPORTANCE Vaccination represents the most effective prophylactic option against influenza. The threat of emergence of influenza pandemics necessitates the ability to generate vaccine viruses rapidly. However, as the influenza virus exhibits a high mutation rate, vaccines must be updated to ensure a good match of the HA and NA antigens between the vaccine and the circulating strain. Here, we generated a genetically stable master virus of the A/Puerto Rico/8/1934 (H1N1) backbone encoding an engineered high-fidelity viral polymerase. Importantly, following the application of the high-fidelity PR8 backbone, no mutation resulting in antigenic change was introduced into the HA gene during propagation of the A(H1N1)pdm09 candidate vaccine virus. The low error rate of the present vaccine virus should decrease the risk of generating mutant viruses with increased virulence. Therefore, our findings are expected to be useful for the development of prepandemic vaccines and live attenuated vaccines with higher safety than that of the present candidate vaccines.

Collaboration


Dive into the Tadasuke Naito's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mineki Saito

Kawasaki Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuetsu Tanaka

University of the Ryukyus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge