Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tadatoshi Sato is active.

Publication


Featured researches published by Tadatoshi Sato.


PLOS Genetics | 2013

Parathyroid-specific deletion of Klotho unravels a novel calcineurin-dependent FGF23 signaling pathway that regulates PTH secretion.

Hannes Olauson; Karolina Lindberg; Risul Amin; Tadatoshi Sato; Ting Jia; Regina Goetz; Moosa Mohammadi; Göran Andersson; Beate Lanske; Tobias E. Larsson

Klotho acts as a co-receptor for and dictates tissue specificity of circulating FGF23. FGF23 inhibits PTH secretion, and reduced Klotho abundance is considered a pathogenic factor in renal secondary hyperparathyroidism. To dissect the role of parathyroid gland resident Klotho in health and disease, we generated mice with a parathyroid-specific Klotho deletion (PTH-KL−/−). PTH-KL−/− mice had a normal gross phenotype and survival; normal serum PTH and calcium; unaltered expression of the PTH gene in parathyroid tissue; and preserved PTH response and sensitivity to acute changes in serum calcium. Their PTH response to intravenous FGF23 delivery or renal failure did not differ compared to their wild-type littermates despite disrupted FGF23-induced activation of the MAPK/ERK pathway. Importantly, calcineurin-NFAT signaling, defined by increased MCIP1 level and nuclear localization of NFATC2, was constitutively activated in PTH-KL−/− mice. Treatment with the calcineurin-inhibitor cyclosporine A abolished FGF23-mediated PTH suppression in PTH-KL−/− mice whereas wild-type mice remained responsive. Similar results were observed in thyro-parathyroid explants ex vivo. Collectively, we present genetic and functional evidence for a novel, Klotho-independent, calcineurin-mediated FGF23 signaling pathway in parathyroid glands that mediates suppression of PTH. The presence of Klotho-independent FGF23 effects in a Klotho-expressing target organ represents a paradigm shift in the conceptualization of FGF23 endocrine action.


American Journal of Physiology-endocrinology and Metabolism | 2009

Hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia in sucrose-fed obese rats via two pathways

Takashi Uebanso; Yutaka Taketani; Makiko Fukaya; Kazusa Sato; Yuichiro Takei; Tadatoshi Sato; Naoki Sawada; Kikuko Amo; Nagakatsu Harada; Hidekazu Arai; Hironori Yamamoto; Eiji Takeda

The mechanism by which replacement of some dietary carbohydrates with protein during weight loss favors lipid metabolism remains obscure. In this study, we investigated the effect of an energy-restricted, high-protein/low-carbohydrate diet on lipid metabolism in obese rats. High-sucrose-induced obese rats were assigned randomly to one of two energy-restricted dietary interventions: a carbohydrate-based control diet (CD) or a high-protein diet (HPD). Lean rats of the same age were assigned as normal control. There was significantly greater improvement in fatty liver and hypertriglyceridemia with the HPD diet relative to the CD diet. Expression of genes regulated by fibroblast growth factor-21 (FGF21) and involved in liver lipolysis and lipid utilitization, such as lipase and acyl-CoA oxidase, increased in obese rats fed the HPD. Furthermore, there was an inverse correlation between levels of FGF21 gene expression (regulated by glucagon/insulin balance) and increased triglyceride concentrations in liver from obese rats. Expression of hepatic stearoyl-CoA desaturase-1 (SCD1), regulated primarily by the dietary carbohydrate, was also markedly reduced in the HPD group (similar to plasma triglyceride levels in fasting animals) relative to the CD group. In conclusion, a hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia effectively relative to a carbohydrate diet. The two cellular pathways at work behind these benefits include stimulation of hepatic lipolysis and lipid utilization mediated by FGF21 and reduction of hepatic VLDL-TG production by SCD1 regulation.


Journal of Bone and Mineral Research | 2014

Increased osteopontin contributes to inhibition of bone mineralization in FGF23-deficient mice

Quan Yuan; Yan Jiang; Xuefeng Zhao; Tadatoshi Sato; Michael Densmore; Christiane Schüler; Reinhold G. Erben; Marc D. McKee; Beate Lanske

Excessive FGF23 has been identified as a pivotal phosphaturic factor leading to renal phosphate‐wasting and the subsequent development of rickets and osteomalacia. In contrast, loss of FGF23 in mice (Fgf23−/−) leads to high serum phosphate, calcium, and 1,25‐vitamin D levels, resulting in early lethality attributable to severe ectopic soft‐tissue calcifications and organ failure. Paradoxically, Fgf23−/− mice exhibit a severe defect in skeletal mineralization despite high levels of systemic mineral ions and abundant ectopic mineralization, an abnormality that remains largely unexplained. Through use of in situ hybridization, immunohistochemistry, and immunogold labeling coupled with electron microscopy of bone samples, we discovered that expression and accumulation of osteopontin (Opn/OPN) was markedly increased in Fgf23−/− mice. These results were confirmed by qPCR analyses of Fgf23−/− bones and ELISA measurements of serum OPN. To investigate whether elevated OPN levels were contributing to the bone mineralization defect in Fgf23−/− mice, we generated Fgf23−/−/Opn−/− double‐knockout mice (DKO). Biochemical analyses showed that the hypercalcemia and hyperphosphatemia observed in Fgf23−/− mice remained unchanged in DKO mice; however, micro‐computed tomography (µCT) and histomorphometric analyses showed a significant improvement in total mineralized bone volume. The severe osteoidosis was markedly reduced and a normal mineral apposition rate was present in DKO mice, indicating that increased OPN levels in Fgf23−/− mice are at least in part responsible for the osteomalacia. Moreover, the increased OPN levels were significantly decreased upon lowering serum phosphate by feeding a low‐phosphate diet or after deletion of NaPi2a, indicating that phosphate levels contribute in part to the high OPN levels in Fgf23−/− mice. In summary, our results suggest that increased OPN is an important pathogenic factor mediating the mineralization defect and the alterations in bone metabolism observed in Fgf23−/− bones.


Journal of Bone and Mineral Research | 2011

FGF-23/Klotho signaling is not essential for the phosphaturic and anabolic functions of PTH

Quan Yuan; Tadatoshi Sato; Michael Densmore; Hiroaki Saito; Christiane Schüler; Reinhold G. Erben; Beate Lanske

Parathyroid hormone (PTH) is widely recognized as a key regulator of mineral ion homeostasis. Daily intermittent administration of PTH is the only currently available anabolic therapy for bone disorders such as osteoporosis. Recent studies have shown that PTH increases transcription and secretion of fibroblast growth factor 23 (FGF‐23), another important regulator of phosphate homeostasis and skeletal metabolism. However, the full relationship between PTH and FGF‐23 is largely unknown. This study evaluated the effect of FGF‐23/Klotho signaling on the phosphaturic and anabolic functions of PTH. Eight‐day‐old wild‐type (WT) Fgf23−/− and Kl−/− mice were injected with 100 µg/kg PTH(1–34) or vehicle daily for a 2‐week‐period and then euthanized. Intermittent injection of PTH successfully reduced the serum phosphate levels and reversed the hyperphosphatemia of Fgf23−/− and Kl−/− mice. Bone changes were analyzed in the distal femur metaphysis by peripheral quantitative computed tomography (pQCT), micro–computed tomography (µCT), and histomorphometry. PTH treatment induced substantial increases in bone mineral density (BMD) and trabecular bone volume in each mouse genotype. Expression of osteoblastic marker genes, including Runx2, Col1, Alp, Ocn, and Sost, was similarly altered. In addition, primary osteoblasts were isolated and treated with 100 nM PTH in vitro. PTH treatment similarly induced cAMP accumulation and phosphorylation of ERK1/2 and CREB in the osteoblasts from each genotype. Taken together, our results demonstrate that FGF‐23/Klotho signaling is not essential for the phosphaturic and anabolic functions of PTH, suggesting that PTH can function as a therapeutic agent to improve the skeletal quality of patients even in the presence of abnormal serum FGF‐23 levels.


PLOS Genetics | 2012

Deletion of PTH Rescues Skeletal Abnormalities and High Osteopontin Levels in Klotho−/− Mice

Quan Yuan; Tadatoshi Sato; Michael Densmore; Hiroaki Saito; Christiane Schüler; Reinhold G. Erben; Beate Lanske

Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. Parathyroid hormone (PTH), Klotho, and FGF23 have been shown to act as key regulators of serum calcium and phosphate homeostasis through a complex feedback mechanism. The phenotypes of Fgf23−/− and Klotho−/− (Kl−/−) mice are very similar and include hypercalcemia, hyperphosphatemia, hypervitaminosis D, suppressed PTH levels, and severe osteomalacia/osteoidosis. We recently reported that complete ablation of PTH from Fgf23−/− mice ameliorated the phenotype in Fgf23−/−/PTH−/− mice by suppressing serum vitamin D and calcium levels. The severe osteomalacia in Fgf23−/− mice, however, persisted, suggesting that a different mechanism is responsible for this mineralization defect. In the current study, we demonstrate that deletion of PTH from Kl−/− (Kl−/−/PTH−/− or DKO) mice corrects the abnormal skeletal phenotype. Bone turnover markers are restored to wild-type levels; and, more importantly, the skeletal mineralization defect is completely rescued in Kl−/−/PTH−/− mice. Interestingly, the correction of the osteomalacia is accompanied by a reduction in the high levels of osteopontin (Opn) in bone and serum. Such a reduction in Opn levels could not be observed in Fgf23−/−/PTH−/− mice, and these mice showed sustained osteomalacia. This significant in vivo finding is corroborated by in vitro studies using calvarial osteoblast cultures that show normalized Opn expression and rescued mineralization in Kl−/−/PTH−/− mice. Moreover, continuous PTH infusion of Kl−/− mice significantly increased Opn levels and osteoid volume, and decreased trabecular bone volume. In summary, our results demonstrate for the first time that PTH directly impacts the mineralization disorders and skeletal deformities of Kl−/−, but not of Fgf23−/− mice, possibly by regulating Opn expression. These are significant new perceptions into the role of PTH in skeletal and disease processes and suggest FGF23-independent interactions of PTH with Klotho.


The FASEB Journal | 2016

Parathyroid hormone 1 receptor is essential to induce FGF23 production and maintain systemic mineral ion homeostasis

Yi Fan; Ruiye Bi; Michael Densmore; Tadatoshi Sato; Tatsuya Kobayashi; Quan Yuan; Xuedong Zhou; Reinhold G. Erben; Beate Lanske

Parathyroid‐hormone‐type 1 receptor (PTH1R) is extensively expressed in key regulatory organs for systemic mineral ion homeostasis, including kidney and bone. We investigated the bone‐specific functions of PTH1R in modulating mineral ion homeostasis by generating a novel mouse model in which PTH1R is ablated in the limb mesenchyme using Prx1Cre transgenic mice. Such ablation decreased FGF23 protein and serum levels by 50%, despite normal Fgf23 mRNA levels in long bones. Circulating calcium and PTH levels were unchanged, but inorganic phosphate and 1,25 (OH)2D3 levels were significantly decreased and accompanied by elevated urinary calcium and phosphate wasting. Key renal genes for balancing mineral ion homeostasis, calbindinD28k, Klotho, and Napi2a were suppressed by 30‐40%. Intermittent hPTH(1‐34) injections increased Fgf23 mRNA (7.3‐fold), Nurr1 mRNA (3.1‐fold), and serum intact‐FGF23 (1.6‐fold) in controls, but failed to induce Fgf23, Nurr1 mRNA, or intact FGF23 production in mutants. Moreover, a significant elevation in serum C‐terminal‐FGF23 levels (4‐fold) was detected in both genotypes. PTH markedly down‐regulated Galnt3 expression (2.7‐fold) in controls but not in mutants. These results demonstrate the pivotal role of PTH1R in long bones to regulate systemic mineral ion homeostasis and the direct induction of FGF23 by PTH1R signaling.—Fan, Y., Bi, R., Densmore, M. J., Sato, T., Kobayashi, T., Yuan, Q., Zhou, X., Erben, R. G., Lanske, B. Parathyroid hormone 1 receptor is essential to induce FGF23 production and maintain systemic mineral ion homeostasis. FASEB J. 30, 428‐440 (2016). www.fasebj.org


The FASEB Journal | 2011

Deletion of Zfp521 rescues the growth plate phenotype in a mouse model of Jansen metaphyseal chondrodysplasia

Dutmanee Seriwatanachai; Michael Densmore; Tadatoshi Sato; Diego Correa; Lynn Neff; Roland Baron; Beate Lanske

Jansen metaphyseal chondrodysplasia (JMC) is caused by a constitutively activating mutation of the parathyroid hormone (PTH)/PTH‐related protein (PTHrP) receptor (PTHR1) and is characterized by widening of the metaphyses, reduction of long bone length, and short stature. A transgenic mouse expressing this mutation under the collagen α1(II) promoter has been generated to investigate the mechanisms responsible for this chondrodysplasia. We recently identified zinc finger protein 521 (Zfp521) as a downstream target gene of PTHrP signaling. Interestingly, loss of Zfp521 from chondrocytes leads to reduced cell proliferation and increased differentiation in the growth plate. Thus, we hypothesized that specifically ablating Zfp521 from Jansen chondrocytes could sufficiently rescue the chondrodysplasia phenotype. Our results show that Zfp521 expression is up‐regulated in Jansen mouse growth plate chondrocytes and that PTHR1 is required for Zfp521 expression. Its ablation from Jansen chondrocytes restored normal cell differentiation, thus initiating chondrocyte apoptosis at the chondro‐osseous junction, leading to partial rescue of endochondral bone formation shown by proper bone length. This study provides the first genetic evidence that Zfp521 is required downstream of PTHR1 signaling to act on chondrocyte proliferation, differentiation, and cell death.—Seriwatanachai, D., Densmore, M. J., Sato, T., Correa, D., Neff, L., Baron, R., Lanske, B. Deletion of Zfp521 rescues the growth plate phenotype in a mouse model of Jansen metaphyseal chondrodysplasia. FASEB J. 25, 3057–3067 (2011). www.fasebj.org


Kidney International | 2017

Klotho expression in osteocytes regulates bone metabolism and controls bone formation

Hirotaka Komaba; Jovana Kaludjerovic; Dorothy Hu; Kenichi Nagano; Katsuhiko Amano; Noriko Ide; Tadatoshi Sato; Michael Densmore; Jun-ichi Hanai; Hannes Olauson; Teresita Bellido; Tobias E. Larsson; Roland Baron; Beate Lanske

Osteocytes within the mineralized bone matrix control bone remodeling by regulating osteoblast and osteoclast activity. Osteocytes express the aging suppressor Klotho, but the functional role of this protein in skeletal homeostasis is unknown. Here we identify Klotho expression in osteocytes as a potent regulator of bone formation and bone mass. Targeted deletion of Klotho from osteocytes led to a striking increase in bone formation and bone volume coupled with enhanced osteoblast activity, in sharp contrast to what is observed in Klotho hypomorphic (kl/kl) mice. Conversely, overexpression of Klotho in cultured osteoblastic cells inhibited mineralization and osteogenic activity during osteocyte differentiation. Further, the induction of chronic kidney disease with high-turnover renal osteodystrophy led to downregulation of Klotho in bone cells. This appeared to offset the skeletal impact of osteocyte-targeted Klotho deletion. Thus, our findings establish a key role of osteocyte-expressed Klotho in regulating bone metabolism and indicate a new mechanism by which osteocytes control bone formation.


Endocrinology | 2011

PTH Ablation Ameliorates the Anomalies of Fgf23-Deficient Mice by Suppressing the Elevated Vitamin D and Calcium Levels

Quan Yuan; Despina Sitara; Tadatoshi Sato; Michael Densmore; Hiroaki Saito; Christine Schüler; Reinhold G. Erben; Beate Lanske

Fibroblast growth factor 23 (FGF23) is a key regulator of mineral ion homeostasis. Genetic ablation of Fgf23 in mice leads to severe biochemical disorders including elevated serum 1,25-dihydroxyvitamin D [1,25(OH)2D], hypercalcemia, hyperphosphatemia, and marked decreased PTH levels. Because PTH stimulates 1,25(OH)2D production and increases serum calcium levels, we hypothesized that ablation of PTH from the Fgf23 knockout (Fgf23-/-) mice could suppress these affects, thus ameliorating the soft tissue and skeletal anomalies in these animals. In this study, we generated a genetic mouse model with dual ablation of the Fgf23/PTH genes. The data show that deletion of PTH does suppress the markedly higher serum 1,25(OH)2D and calcium levels observed in Fgf23-/- mice and results in much larger, heavier, and more active double-knockout mice with improved soft tissue and skeletal phenotypes. On the contrary, when we infused PTH (1-34) peptide into Fgf23-/- mice using osmotic minipumps, serum 1,25(OH)2D and calcium levels were increased even further, leading to marked reduction in trabecular bone. These results indicate that PTH is able to modulate the anomalies of Fgf23-/- mice by controlling serum 1,25(OH)2D and calcium levels.


Bone | 2013

Effect of chronic kidney disease on the healing of titanium implants

Huawei Zou; Xuefeng Zhao; Ningyuan Sun; Shiwen Zhang; Tadatoshi Sato; Haiyang Yu; Qianming Chen; Hans-Peter Weber; Michel Dard; Quan Yuan; Beate Lanske

Chronic kidney disease (CKD) has become a worldwide public health problem. However, its effect on osseointegration of dental implants is largely unknown. The aim of this study is to investigate whether CKD impairs the quality of the osseointegration of titanium implants. Uremia was induced by 5/6 nephrectomy in mice, and serum levels of BUN, FGF23, PTH and ALP were significantly increased. For in vitro tests, bone marrow mesenchymal stem cells (BMMSCs) were obtained and cultured on titanium discs. There was no significant difference in term of expression of osteogenic marker genes including Osx, Col-1, Ocn, and Opn, as quantified by qPCR. Moreover, Alizarin Red S staining showed comparable mineralized nodules formation. Histomorphometrical analysis of experimental implants inserted in the femurs of CKD mice revealed a trend of decreased BIC ratio at 2-week healing. The strength of bone-implant integration, as measured by a push-in method, was significantly lower for the CKD group at 2 weeks, although a comparable level was reached at 4 weeks. These results demonstrated that CKD only negatively affects the osseointegration of titanium implants at the early stage.

Collaboration


Dive into the Tadatoshi Sato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eiji Takeda

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reinhold G. Erben

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge