Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tadayoshi Kanao is active.

Publication


Featured researches published by Tadayoshi Kanao.


Frontiers in Microbiology | 2012

Redox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects.

D. Barrie Johnson; Tadayoshi Kanao; Sabrina Hedrich

Many different species of acidophilic prokaryotes, widely distributed within the domains Bacteria and Archaea, can catalyze the dissimilatory oxidation of ferrous iron or reduction of ferric iron, or can do both. Microbially mediated cycling of iron in extremely acidic environments (pH < 3) is strongly influenced by the enhanced chemical stability of ferrous iron and far greater solubility of ferric iron under such conditions. Cycling of iron has been demonstrated in vitro using both pure and mixed cultures of acidophiles, and there is considerable evidence that active cycling of iron occurs in acid mine drainage streams, pit lakes, and iron-rich acidic rivers, such as the Rio Tinto. Measurements of specific rates of iron oxidation and reduction by acidophilic microorganisms show that different species vary in their capacities for iron oxido-reduction, and that this is influenced by the electron donor provided and growth conditions used. These measurements, and comparison with corresponding data for oxidation of reduced sulfur compounds, also help explain why ferrous iron is usually used preferentially as an electron donor by acidophiles that can oxidize both iron and sulfur, even though the energy yield from oxidizing iron is much smaller than that available from sulfur oxidation. Iron-oxidizing acidophiles have been used in biomining (a technology that harness their abilities to accelerate the oxidative dissolution of sulfidic minerals and thereby facilitate the extraction of precious and base metals) for several decades. More recently they have also been used to simultaneously remediate iron-contaminated surface and ground waters and produce a useful mineral by-product (schwertmannite). Bioprocessing of oxidized mineral ores using acidophiles that catalyze the reductive dissolution of ferric iron minerals such as goethite has also recently been demonstrated, and new biomining technologies based on this approach are being developed.


Bioscience, Biotechnology, and Biochemistry | 2004

Involvement of sulfide:quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1.

Satoshi Wakai; Mei Kikumoto; Tadayoshi Kanao; Kazuo Kamimura

The effects of cyanide, azide, and 2-n-Heptyl-4-hydroxy-quinoline-N-oxide (HQNO) on the oxidation of ferrous ion or elemental sulfur with Acidithiobacillus ferrooxidans NASF-1 cells grown in iron- or sulfur-medium were examined. The iron oxidation of both iron- and sulfur-grown cells was strongly inhibited by cyanide and azide, but not by HQNO. Sulfur oxidation was relatively resistant to cyanide and azide, and inhibited by HQNO. Higher sulfide oxidation, ubiquinol dehydrogenase activity, and sulfide:quinone oxidoreductase (SQR) activity were observed in sulfur-grown cells more than in iron-grown cells. Sulfide oxidation in the presence of ubiquinone with the membrane fraction was inhibited by HQNO, but not by cyanide, azide, antimycin A, and myxothiazol. The transcription of three genes, encoding an aa3-type cytochrome c oxidase (coxB), a bd-type ubiquinol oxidase (cydA), and an sqr, were measured by real-time reverse transcription polymerase chain reaction. The transcriptional levels of coxB and cydA genes were similar in sulfur- and iron-grown cells, but that of sqr was 3-fold higher in sulfur-grown cells than in iron-grown cells. A model is proposed for the oxidation of reduced inorganic sulfur compounds in A. ferrooxidans NASF-1 cells.


Bioscience, Biotechnology, and Biochemistry | 2007

Purification and Characterization of Sulfide : Quinone Oxidoreductase from an Acidophilic Iron-Oxidizing Bacterium, Acidithiobacillus ferrooxidans

Satoshi Wakai; Mizuho Tsujita; Mei Kikumoto; Mohammed Abul Manchur; Tadayoshi Kanao; Kazuo Kamimura

Sulfide:quinone oxidoreductase (SQR) was purified from membrane of acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans NASF-1 cells grown on sulfur medium. It was composed of a single polypeptide with an apparent molecular mass of 47 kDa. The apparent K m values for sulfide and ubiquinone were 42 and 14 μM respectively. The apparent optimum pH for the SQR activity was about 7.0. A gene encoding a putative SQR of A. ferrooxidans NASF-1 was cloned and sequenced. The gene was expressed in Escherichia coli as a thioredoxin-fusion protein in inclusion bodies in an inactive form. A polyclonal antibody prepared against the recombinant protein reacted immunologically with the purified SQR. Western blotting analysis using the antibody revealed an increased level of SQR synthesis in sulfur-grown A. ferrooxidans NASF-1 cells, implying the involvement of SQR in elemental sulfur oxidation in sulfur-grown A. ferrooxidans NASF-1 cells.


Journal of Fermentation and Bioengineering | 1996

Isolation and identification of an iron-oxidizing bacterium which can grow on tetrathionate medium and the properties of a tetrathionate-decomposing enzyme isolated from the bacterium

Tsuyoshi Sugio; Tadayoshi Kanao; Hirotaka Furukawa; Toru Nagasawa; Robert C. Blake

Abstract Among 150 pure strains of iron-oxidizing bacteria obtained from natural environments, two strains, Funis 2-1 and OK1-50, had the ability to use potassium tetrathionate (K 2 S 4 O 6 ) as a sole energy source for growth. Funis 2-1 was a gram-negative, rod-shaped, acidophilic iron- and sulfur-oxidizing chemolithotrophic bacterium and had the same cytochrome composition and mean G + C content of DNA as Thiobacillus ferrooxidans , indicating that the strain is T. ferrooxidans . A tetrathionate-decomposing enzyme that catalyzes the disproportionate metabolism of 4 mol of tetrathionate into 7 mol of thiosulfate and 2 mol of sulfate was located on the plasma membrane of K 2 S 4 O 6 -grown, but not Fe 2+ -grown Funis 2-1 cells. Washed intact cells and cell extracts prepared from Funis 2-1 cells grown on K 2 S 4 O 6 medium supplemented with more than 11 mM FeSO 4 did not show K 2 S 4 O 6 -decomposing enzyme activity. K 2 S 4 O 6 -decomposing enzyme was purified to homogeneity from K 2 S 4 O 6 -grown Funis 2-1 cells. The apparent molecular weight of this enzyme was estimated to be 50,000 by gel filtration, 50,000 by SDS-PAGE, and 49,600 using a time-of-flight mass spectrometer, indicating that the enzyme is monomeric. The enzyme was most active at pH 3.5 and 50°C and the activity was enhanced approximately 18 fold by a concentration of 200 mM of sulfate ion. The Michaelis constant of this enzyme for K 2 S 4 O 6 was 0.73 mM.


Extremophiles | 2005

Effects of inhibitors and NaCl on the oxidation of reduced inorganic sulfur compounds by a marine acidophilic, sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH

Kazuo Kamimura; Emi Higashino; Tadayoshi Kanao; Tsuyoshi Sugio

The effect of NaCl and the pathways of the oxidation of reduced inorganic sulfur compounds were studied using resting cells and cell-free extracts of Acidithiobacillus thiooxidans strain SH. This isolate specifically requires NaCl for growth. The oxidation of sulfur and sulfite by resting cells was strongly inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide. Carbonylcyanide m-chlorophenyl-hydrazone and monensin were also relatively strong inhibitors. Thiosulfate-oxidizing activity was not inhibited by these uncouplers. Valinomycin did not inhibit the oxidation of sulfur compounds. NaCl stimulated the sulfur- and sulfite-oxidizing activities in resting cells but not in cell-free extracts. The tetrathionate-oxidizing activity in resting cells was slightly stimulated by NaCl, whereas it did not influence the thiosulfate-oxidizing activity. Sulfide oxidation was biphasic, suggesting the formation of intermediate sulfur. The initial phase of sulfide oxidation was not affected by NaCl, whereas the subsequent oxidation of sulfur in the second phase was Na+-dependent. A model is proposed for the role of NaCl in the metabolism of reduced sulfur compounds in A. thiooxidans strain SH.


Bioscience, Biotechnology, and Biochemistry | 2005

Growth Inhibition by Tungsten in the Sulfur-Oxidizing Bacterium Acidithiobacillus thiooxidans

Atsunori Negishi; Tadashi Muraoka; Terunobu Maeda; Fumiaki Takeuchi; Tadayoshi Kanao; Kazuo Kamimura; Tsuyoshi Sugio

Growth of five strains of sulfur-oxidizing bacteria Acidithiobacillus thiooxidans, including strain NB1-3, was inhibited completely by 50 μM of sodium tungstate (Na2WO4). When the cells of NB1-3 were incubated in 0.1 M β-alanine–SO4 2− buffer (pH 3.0) with 100 μM Na2WO4 for 1 h, the amount of tungsten bound to the cells was 33 μg/mg protein. Approximately 10 times more tungsten was bound to the cells at pH 3.0 than at pH 7.0. The tungsten binding to NB1-3 cells was inhibited by oxyanions such as sodium molybdenum and ammonium vanadate. The activities of enzymes involved in elemental sulfur oxidation of NB1-3 cells such as sulfur oxidase, sulfur dioxygenase, and sulfite oxidase were strongly inhibited by Na2WO4. These results indicate that tungsten binds to NB1-3 cells and inhibits the sulfur oxidation enzyme system of the cells, and as a result, inhibits cell growth. When portland cement bars supplemented with 0.075% metal nickel and with 0.075% metal nickel and 0.075% calcium tungstate were exposed to the atmosphere of a sewage treatment plant containing 28 ppm of H2S for 2 years, the weight loss of the portland cement bar with metal nickel and calcium tungstate was much lower than the cement bar containing 0.075% metal nickel.


Bioscience, Biotechnology, and Biochemistry | 2008

Isolation and Characterization of Acidithiobacillus ferrooxidans Strain D3-2 Active in Copper Bioleaching from a Copper Mine in Chile

Tsuyoshi Sugio; Masanori Wakabayashi; Tadayoshi Kanao; Fumiaki Takeuchi

Acidithiobacillus ferrooxidans strain D3-2, which has a high copper bioleaching activity, was isolated from a low-grade sulfide ore dump in Chile. The amounts of Cu2+ solubilized from 1% chalcopyrite (CuFeS2) concentrate medium (pH 2.5) by A. ferrooxidans strains D3-2, D3-6, and ATCC 23270 and 33020 were 1360, 1080, 650, and 600 mg·l −1·30 d−1. The iron oxidase activities of D3-2, D3-6, and ATCC 23270 were 11.7, 13.2, and 27.9 μl O2 uptake·mg protein−1·min−1. In contrast, the sulfite oxidase activities of strains D3-2, D3-6, and ATCC 23270 were 5.8, 2.9, and 1.0 μl O2 uptake·mg protein−1·min−1. Both of cell growth and Cu-bioleaching activity of strains D3-6 and ATCC 23270, but not, of D3-2, in the chalcopyrite concentrate medium were completely inhibited in the presence of 5 mM sodium bisulfite. The sulfite oxidase of strain D3-2 was much more resistant to sulfite ion than that of strain ATCC 23270. Since sulfite ion is a highly toxic intermediate produced during sulfur oxidation that strongly inhibits iron oxidase activity, these results confirm that strain D3-2, with a unique sulfite resistant-sulfite oxidase, was able to solubilize more copper from chalcopyrite than strain ATCC 23270, with a sulfite-sensitive sulfite oxidase.


Applied and Environmental Microbiology | 2008

Reconstitution of Iron Oxidase from Sulfur-Grown Acidithiobacillus ferrooxidans

Taher M. Taha; Tadayoshi Kanao; Fumiaki Takeuchi; Tsuyoshi Sugio

ABSTRACT The iron oxidation system from sulfur-grown Acidithiobacillus ferrooxidans ATCC 23270 cells was reconstituted in vitro. Purified rusticyanin, cytochrome c, and aa3-type cytochrome oxidase were essential for reconstitution. The iron-oxidizing activity of the reconstituted system was 3.3-fold higher than that of the cell extract from which these components were purified.


Bioscience, Biotechnology, and Biochemistry | 2007

Increase in Fe2+-Producing Activity during Growth of Acidithiobacillus ferrooxidans ATCC23270 on Sulfur

Tsuyoshi Sugio; Taher M. Taha; Tadayoshi Kanao; Fumiaki Takeuchi

When Acidithiobacillus ferrooxidans ATCC23270 cells, grown for many generations on sulfur were grown in sulfur medium with and without Fe3+, the bacterium markedly increased not only in iron oxidase activity but also in Fe2+-producing sulfide:ferric ion oxidoreductase (SFORase) activity during the early log phase, and retained part of these activities during the late log phase. The activity of SFORase, which catalyzes the production of Fe2+ from Fe3+ and sulfur, of sulfur-grown cells was approximately 10–20 fold higher than that of iron-grown cells. aa 3 type cytochrome c oxidase, an important component of iron oxidase in A. ferrooxidans, was partially purified from sulfur-grown cells. A. ferrooxidans ATCC23270 cells grown for many generations on sulfur had the ability to grow on iron as rapidly as that did iron-grown cells. These results suggest that both iron oxidase and Fe2+-producing SFORase have a role in the energy generation of A. ferrooxidans ATCC23270 from sulfur.


Fems Microbiology Letters | 2010

Recombinant tetrathionate hydrolase from Acidithiobacillus ferrooxidans requires exposure to acidic conditions for proper folding

Tadayoshi Kanao; Chie Matsumoto; Kumiko Shiraga; Kyoya Yoshida; Jun Takada; Kazuo Kamimura

Tetrathionate hydrolase (4THase) plays an important role in dissimilatory sulfur metabolism in the acidophilic chemolithoautotrophic iron- and sulfur-oxidizing bacterium Acidithiobacillus ferrooxidans. We have already identified the gene encoding 4THase (Af-tth) in this bacterium. The heterologous expression of Af-tth in Escherichia coli resulted in the formation of inclusion bodies of the protein in an inactive form. The recombinant protein (Af-Tth) was successfully activated after an in vitro refolding treatment. The specific activity of the refolded Af-Tth obtained was 21.0+/-9.4 U mg(-1) when the protein solubilized from inclusion bodies by 6 M guanidine hydrochloride solution was refolded in a buffer containing 10 mM beta-alanine, 2 mM dithiothreitol, 0.4 M ammonium sulfate, and 30% v/v glycerol with the pH adjusted to 4.0 by sulfuric acid for 14 h at 4 degrees C. The in vitro refolding experiments revealed that Af-Tth required exposure to an acidic environment during protein folding for activation. This property reflects a physiological characteristic of the Af-Tth localized in the outer membrane of the acidophilic A. ferrooxidans. No cofactor such as pyrroloquinoline quinone (PQQ) was required during the refolding process in spite of the similarity in the primary structure of Af-Tth to the PQQ family of proteins.

Collaboration


Dive into the Tadayoshi Kanao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge