Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tadayoshi Kohno is active.

Publication


Featured researches published by Tadayoshi Kohno.


ieee symposium on security and privacy | 2010

Experimental Security Analysis of a Modern Automobile

Karl Koscher; Alexei Czeskis; Franziska Roesner; Shwetak N. Patel; Tadayoshi Kohno; Stephen Checkoway; Damon McCoy; Brian Kantor; Danny Anderson; Hovav Shacham; Stefan Savage

Modern automobiles are no longer mere mechanical devices; they are pervasively monitored and controlled by dozens of digital computers coordinated via internal vehicular networks. While this transformation has driven major advancements in efficiency and safety, it has also introduced a range of new potential risks. In this paper we experimentally evaluate these issues on a modern automobile and demonstrate the fragility of the underlying system structure. We demonstrate that an attacker who is able to infiltrate virtually any Electronic Control Unit (ECU) can leverage this ability to completely circumvent a broad array of safety-critical systems. Over a range of experiments, both in the lab and in road tests, we demonstrate the ability to adversarially control a wide range of automotive functions and completely ignore driver input\dash including disabling the brakes, selectively braking individual wheels on demand, stopping the engine, and so on. We find that it is possible to bypass rudimentary network security protections within the car, such as maliciously bridging between our cars two internal subnets. We also present composite attacks that leverage individual weaknesses, including an attack that embeds malicious code in a cars telematics unit and that will completely erase any evidence of its presence after a crash. Looking forward, we discuss the complex challenges in addressing these vulnerabilities while considering the existing automotive ecosystem.


international cryptology conference | 2005

Searchable encryption revisited: consistency properties, relation to anonymous IBE, and extensions

Michel Abdalla; Mihir Bellare; Dario Catalano; Eike Kiltz; Tadayoshi Kohno; Tanja Lange; John Malone-Lee; Gregory Neven; Pascal Paillier; Haixia Shi

We identify and fill some gaps with regard to consistency (the extent to which false positives are produced) for public-key encryption with keyword search (PEKS). We define computational and statistical relaxations of the existing notion of perfect consistency, show that the scheme of [7] is computationally consistent, and provide a new scheme that is statistically consistent. We also provide a transform of an anonymous IBE scheme to a secure PEKS scheme that, unlike the previous one, guarantees consistency. Finally we suggest three extensions of the basic notions considered here, namely anonymous HIBE, public-key encryption with temporary keyword search, and identity-based encryption with keyword search.


ieee symposium on security and privacy | 2008

Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses

Daniel Halperin; Thomas S. Heydt-Benjamin; Benjamin Ransford; Shane S. Clark; Benessa Defend; Will Morgan; Kevin Fu; Tadayoshi Kohno; William H. Maisel

Our study analyzes the security and privacy properties of an implantable cardioverter defibrillator (ICD). Introduced to the U.S. market in 2003, this model of ICD includes pacemaker technology and is designed to communicate wirelessly with a nearby external programmer in the 175 kHz frequency range. After partially reverse-engineering the ICDs communications protocol with an oscilloscope and a software radio, we implemented several software radio-based attacks that could compromise patient safety and patient privacy. Motivated by our desire to improve patient safety, and mindful of conventional trade-offs between security and power consumption for resource-constrained devices, we introduce three new zero-power defenses based on RF power harvesting. Two of these defenses are human-centric, bringing patients into the loop with respect to the security and privacy of their implantable medical devices (IMDs). Our contributions provide a scientific baseline for understanding the potential security and privacy risks of current and future IMDs, and introduce human-perceptible and zero-power mitigation techniques that address those risks. To the best of our knowledge, this paper is the first in our community to use general-purpose software radios to analyze and attack previously unknown radio communications protocols.


ieee symposium on security and privacy | 2004

Analysis of an electronic voting system

Tadayoshi Kohno; Adam Stubblefield; Aviel D. Rubin; Dan S. Wallach

With significant U.S. federal funds now available to replace outdated punch-card and mechanical voting systems, municipalities and states throughout the U.S. are adopting paperless electronic voting systems from a number of different vendors. We present a security analysis of the source code to one such machine used in a significant share of the market. Our analysis shows that this voting system is far below even the most minimal security standards applicable in other contexts. We identify several problems including unauthorized privilege escalation, incorrect use of cryptography, vulnerabilities to network threats, and poor software development processes. We show that voters, without any insider privileges, can cast unlimited votes without being detected by any mechanisms within the voting terminal software. Furthermore, we show that even the most serious of our outsider attacks could have been discovered and executed without access to the source code. In the face of such attacks, the usual worries about insider threats are not the only concerns; outsiders can do the damage. That said, we demonstrate that the insider threat is also quite considerable, showing that not only can an insider, such as a poll worker, modify the votes, but that insiders can also violate voter privacy and match votes with the voters who cast them. We conclude that this voting system is unsuitable for use in a general election. Any paperless electronic voting system might suffer similar flaws, despite any certification it could have otherwise received. We suggest that the best solutions are voting systems having a voter-verifiable audit trail, where a computerized voting system might print a paper ballot that can be read and verified by the voter.


IEEE Transactions on Dependable and Secure Computing | 2005

Remote physical device fingerprinting

Tadayoshi Kohno; Andre Broido; Kimberly C. Claffy

We introduce the area of remote physical device fingerprinting, or fingerprinting a physical device, as opposed to an operating system or class of devices, remotely, and without the fingerprinted devices known cooperation. We accomplish this goal by exploiting small, microscopic deviations in device hardware: clock skews. Our techniques do not require any modification to the fingerprinted devices. Our techniques report consistent measurements when the measurer is thousands of miles, multiple hops, and tens of milliseconds away from the fingerprinted device, and when the fingerprinted device is connected to the Internet from different locations and via different access technologies. Further one can apply our passive and semi-passive techniques when the fingerprinted device is behind a NAT or firewall, and also when the devices system time is maintained via NTP or SNTP. One can use our techniques to obtain information about whether two devices an the Internet, possibly shifted in time or IP addresses, are actually the same physical device. Example applications include: computer forensics; tracking, with some probability, a physical device as it connects to the Internet from different public access points; counting the number of devices behind a NAT even when the devices use constant or random IP ID; remotely probing a block of addresses to determine if the addresses correspond to virtual hosts, e.g., as part of a virtual honeynet; and unanonymizing anonymized network traces.


theory and application of cryptographic techniques | 2003

A theoretical treatment of related-key attacks: RKA-PRPS, RKA-PRFs, and applications

Mihir Bellare; Tadayoshi Kohno

We initiate a theoretical investigation of the popular block-cipher design-goal of security against related-key attacks (RKAs). We begin by introducing definitions for the concepts of PRPs and PRFs secure against classes of RKAs, each such class being specified by an associated set of related-key deriving (RKD) functions. Then for some such classes of attacks, we prove impossibility results, showing that no block-cipher can resist these attacks while, for other, related classes of attacks that include popular targets in the block cipher community, we prove possibility results that provide theoretical support for the view that security against them is achievable. Finally we prove security of various block-cipher based constructs that use related keys, including a tweakable block cipher given in [14].


workshop on privacy in the electronic society | 2007

Low-resource routing attacks against tor

Kevin S. Bauer; Damon McCoy; Dirk Grunwald; Tadayoshi Kohno; Douglas C. Sicker

Tor has become one of the most popular overlay networks for anonymizing TCP traffic. Its popularity is due in part to its perceived strong anonymity properties and its relatively low latency service. Low latency is achieved through Torâ s ability to balance the traffic load by optimizing Tor router selection to probabilistically favor routers with highbandwidth capabilities. We investigate how Torâ s routing optimizations impact its ability to provide strong anonymity. Through experiments conducted on PlanetLab, we show the extent to which routing performance optimizations have left the system vulnerable to end-to-end traffic analysis attacks from non-global adversaries with minimal resources. Further, we demonstrate that entry guards, added to mitigate path disruption attacks, are themselves vulnerable to attack. Finally, we explore solutions to improve Torâ s current routing algorithms and propose alternative routing strategies that prevent some of the routing attacks used in our experiments.


privacy enhancing technologies | 2008

Shining Light in Dark Places: Understanding the Tor Network

Damon McCoy; Kevin S. Bauer; Dirk Grunwald; Tadayoshi Kohno; Douglas C. Sicker

To date, there has yet to be a study that characterizes the usage of a real deployed anonymity service. We present observations and analysis obtained by participating in the Tor network. Our primary goals are to better understand Tor as it is deployed and through this understanding, propose improvements. In particular, we are interested in answering the following questions: (1) How is Tor being used? (2) How is Tor being mis-used? (3) Who is using Tor? To sample the results, we show that web traffic makes up the majority of the connections and bandwidth, but non-interactive protocols consume a disproportionately large amount of bandwidth when compared to interactive protocols. We provide a survey of how Tor is being misused, both by clients and by Tor router operators. In particular, we develop a method for detecting exit router logging (in certain cases). Finally, we present evidence that Tor is used throughout the world, but router participation is limited to only a few countries.


ieee symposium on security and privacy | 2012

User-Driven Access Control: Rethinking Permission Granting in Modern Operating Systems

Franziska Roesner; Tadayoshi Kohno; Alexander Moshchuk; Bryan Parno; Helen J. Wang; Crispin Cowan

Modern client platforms, such as iOS, Android, Windows Phone, Windows 8, and web browsers, run each application in an isolated environment with limited privileges. A pressing open problem in such systems is how to allow users to grant applications access to user-owned resources, e.g., to privacy- and cost-sensitive devices like the camera or to user data residing in other applications. A key challenge is to enable such access in a way that is non-disruptive to users while still maintaining least-privilege restrictions on applications. In this paper, we take the approach of user-driven access control, whereby permission granting is built into existing user actions in the context of an application, rather than added as an afterthought via manifests or system prompts. To allow the system to precisely capture permission-granting intent in an applications context, we introduce access control gadgets (ACGs). Each user-owned resource exposes ACGs for applications to embed. The users authentic UI interactions with an ACG grant the application permission to access the corresponding resource. Our prototyping and evaluation experience indicates that user-driven access control is a promising direction for enabling in-context, non-disruptive, and least-privilege permission granting on modern client platforms.


fast software encryption | 2003

Helix: Fast Encryption and Authentication in a Single Cryptographic Primitive

Niels Ferguson; Doug Whiting; Bruce Schneier; John Kelsey; Stefan Lucks; Tadayoshi Kohno

Helix is a high-speed stream cipher with a built-in MAC functionality. On a Pentium II CPU it is about twice as fast as Rijndael or Twofish, and comparable in speed to RC4. The overhead per encrypted/authenticated message is low, making it suitable for small messages. It is efficient in both hardware and software, and with some pre-computation can effectively switch keys on a per-message basis without additional overhead.

Collaboration


Dive into the Tadayoshi Kohno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mihir Bellare

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl Koscher

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Tamara Denning

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niels Ferguson

University of California

View shared research outputs
Top Co-Authors

Avatar

Alexei Czeskis

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge