Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tadeusz Librowski is active.

Publication


Featured researches published by Tadeusz Librowski.


Current Medicinal Chemistry | 2010

A Role of GABA Analogues in the Treatment of Neurological Diseases

Kamila Gajcy; Stanisław Lochyński; Tadeusz Librowski

gamma-Amino butyric acid is an extremely important inhibitory neurotransmitter in the mammalian central nervous system and is essential for the overall balance between neuronal excitation and inhibition. It is well documented that GABA deficiency is associated with several important neurological disorders such as Huntingtons chorea, Parkinsons and Alzheimers disease and other psychiatric disorders, like anxiety, depression, pain, panic, or mania. Although, it is known that increasing the brain concentration of GABA prevents convulsions, the high polarity and flexible structure of this compound are probably responsible for its inefficiency as an anticonvulsant when administered orally or intravenously. To resolve this problem, GABA analogues are being designed. Over recent years, there has been increasing interest in the synthesis and pharmacological effect of new GABA derivatives, which can be considered as potent drugs in the treatment of neurodegenerative disorders.


Current Drug Metabolism | 2011

L-carnitine--metabolic functions and meaning in humans life.

Jolanta Pękala; B. Patkowska-Sokoła; R. Bodkowski; Dorota Jamroz; Piotr Nowakowski; Stanisław Lochyński; Tadeusz Librowski

L-Carnitine is an endogenous molecule involved in fatty acid metabolism, biosynthesized within the human body using amino acids: L-lysine and L-methionine, as substrates. L-Carnitine can also be found in many foods, but red meats, such as beef and lamb, are the best choices for adding carnitine into the diet. Good carnitine sources also include fish, poultry and milk. Essentially, L-carnitine transports the chains of fatty acids into the mitochondrial matrix, thus allowing the cells to break down fat and get energy from the stored fat reserves. Recent studies have started to shed light on the beneficial effects of L-carnitine when used in various clinical therapies. Because L-carnitine and its esters help reduce oxidative stress, they have been proposed as a treatment for many conditions, i.e. heart failure, angina and weight loss. For other conditions, such as fatigue or improving exercise performance, L-carnitine appears safe but does not seem to have a significant effect. The presented review of the literature suggests that continued studies are required before L-carnitine administration could be recommended as a routine procedure in the noted disorders. Further research is warranted in order to evaluate the biochemical, pharmacological, and physiological determinants of the response to carnitine supplementation, as well as to determine the potential benefits of carnitine supplements in selected categories of individuals who do not have fatty acid oxidation defects.


Pharmacology, Biochemistry and Behavior | 2005

Enhancement of antidepressant-like activity by joint administration of imipramine and magnesium in the forced swim test: Behavioral and pharmacokinetic studies in mice.

Ewa Poleszak; Piotr Wlaź; Bernadeta Szewczyk; Ewa Kędzierska; Elżbieta Wyska; Tadeusz Librowski; Joanna Szymura-Oleksiak; Sylwia Fidecka; Andrzej Pilc; Gabriel Nowak

The effect of joint administration of imipramine (IMI) and magnesium (Mg) on antidepressant-like activity was studied in mice using forced swim test (FST). Mg doses ineffective per se (5 and 10 mg/kg) given jointly with IMI also at ineffective doses (10 and 15 mg/kg) resulted in a potent reduction in the immobility time. Since these combined treatments did not influence locomotor activity, the antidepressant-like activity was not due to non-specific behavioral activation. Moreover, we estimated the effect of joint administration of magnesium and IMI in FST on serum and brain magnesium, IMI and its active metabolite desipramine (DMI) concentrations in mice. Swim stress (mice subjected to FST) increased the magnesium concentration in serum and decreased it in the brain compared to naive animals. Moreover administration of IMI increased (normalized) magnesium brain concentration, without influence on the serum level. Joint administration of IMI and magnesium did not influence magnesium (compared with FST) or IMI and DMI (compared with IMI treatment alone) concentrations in both examined tissues. The present data demonstrated an enhancement of the antidepressant-like effect by joint administration of IMI and magnesium in the FST, and further indicate the particular role of magnesium in the antidepressant action. Since there was no increase in IMI, DMI or magnesium concentration after joint administration of magnesium and IMI, the data suggest that pharmacodynamic rather than pharmacokinetic interaction between magnesium and IMI is accountable for behavioral effect in the FST.


Current Medicinal Chemistry | 2013

Transient Receptor Potential Channels - Emerging Novel Drug Targets for the Treatment of Pain

Kinga Sałat; Andrzej Moniczewski; Tadeusz Librowski

In mammals several members of the Transient Receptor Potential channel family (TRPs), expressed mainly in the sensory neurons and skin keratinocytes, are implicated in relevant physiological functions, including thermosensation,nociception and vision. Since the TRPV1-4, TRPA1 and TRPM8 channels from this family play a pivotal role in both the detection and possibly modulation of painful stimuli, they are regarded as a very promising target of novel analgesic drugs. A few agents acting at TRPs, such as capsaicin or menthol, have a long history of their application as analgesics,whereas others (e.g. SB705498, JTS653, JNJ17203212, AP18, A967079, Chembridge-5861528 or PBMC) are currently being evaluated both in animals and in humans. In this review we discuss pain physiology, as well as the pharmacological properties of the TRPs involved in pain detection as potential critical peripheral analgesic targets. We present one of the most relevant strategies in the search for novel analgesic drugs, namely the TRP channels and their ligands, both agonists and antagonists as potential novel therapeutics for inflammatory and neuropathic pain syndromes. The safety profile of these agents, in particular their impact on thermosensation, is also discussed below.


Pharmacological Reports | 2009

Polymer-based non-viral gene delivery as a concept for the treatment of cancer

Anna Halama; Michał Kuliński; Tadeusz Librowski; Stanisław Lochyński

Gene therapy has become a promising technique for the treatment of cancer. Nevertheless, the success of gene therapy depends on the effectiveness of the vector. The challenge of a gene carrier is to deliver exogenous DNA from the site of administration into the nucleus of the appropriate target cell. Polymer-based vectors are biologically safe, have low production costs and are efficient tools for gene therapy. Although non-degradable polyplexes exhibit high gene expression levels, their application potential is limited due to their inability to be effectively eliminated, which results in cytotoxicity. The development of biodegradable polymers has allowed for high levels of transfection without cytotoxicity. For site-specific targeting of polyplexes, further modifications, such as incorporation of ligands, can be performed. Most expectations have been addressed to polyplexes architecture according it dynamic response with the microenvironment.


Neuropharmacology | 2015

Antidepressant-like effects of ketamine, norketamine and dehydronorketamine in forced swim test: Role of activity at NMDA receptor.

Kinga Sałat; Agata Siwek; Gabriela Starowicz; Tadeusz Librowski; Gabriel Nowak; Urszula Drabik; Ryszard Gajdosz; Piotr Popik

Ketamine produces rapid and long-lasting antidepressant effects in patients. The involvement of ketamine metabolites in these actions has been proposed. The effects of ketamine and its metabolites norketamine and dehydronorketamine on ligand binding to 80 receptors, ion channels and transporters was investigated at a single concentration of 10 μM. The affinities of all three compounds were then assessed at NMDA receptors using [3H]MK-801 binding. The dose-response relationships of all 3 compounds in the forced swim test were also investigated in mice 30 min after IP administration. The effects of ketamine and norketamine (both 50 mg/kg) were then examined at 30 min, 3 days and 7 days post administration. Among the 80 potential targets examined, only NMDA receptors were affected with a magnitude of >50% by ketamine and norketamine at the concentration of 10 μM. The Ki values of ketamine, norketamine and dehydronorketamine at NMDA receptors were 0.119±0.01, 0.97±0.1 and 3.21±0.3 μM, respectively. Ketamine and norketamine reduced immobility with minimum effective doses (MEDs) of 10 and 50 mg/kg, respectively; dehydronorketamine did not affect immobility at doses of up to 50 mg/kg. Neither ketamine nor norketamine reduced immobility in the forced swim test 3 and 7 days following administration. Further, oral administration of ketamine (5-50 mg/kg) did not affect immobility. We demonstrate that ketamine and norketamine but not dehydronorketamine given acutely at subanesthetic doses reduced immobility in the forced swim test. These antidepressant-like effects appear attributable to NMDA receptor inhibition.


Inflammopharmacology | 2017

Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling

Magdalena Jarosz; Magdalena Olbert; Gabriela Wyszogrodzka; Katarzyna Młyniec; Tadeusz Librowski

Zinc is a nutritionally fundamental trace element, essential to the structure and function of numerous macromolecules, including enzymes regulating cellular processes and cellular signaling pathways. The mineral modulates immune response and exhibits antioxidant and anti-inflammatory activity. Zinc retards oxidative processes on a long-term basis by inducing the expression of metallothioneins. These metal-binding cysteine-rich proteins are responsible for maintaining zinc-related cell homeostasis and act as potent electrophilic scavengers and cytoprotective agents. Furthermore, zinc increases the activation of antioxidant proteins and enzymes, such as glutathione and catalase. On the other hand, zinc exerts its antioxidant effect via two acute mechanisms, one of which is the stabilization of protein sulfhydryls against oxidation. The second mechanism consists in antagonizing transition metal-catalyzed reactions. Zinc can exchange redox active metals, such as copper and iron, in certain binding sites and attenuate cellular site-specific oxidative injury. Studies have demonstrated that physiological reconstitution of zinc restrains immune activation, whereas zinc deficiency, in the setting of severe infection, provokes a systemic increase in NF-κB activation. In vitro studies have shown that zinc decreases NF-κB activation and its target genes, such as TNF-α and IL-1β, and increases the gene expression of A20 and PPAR-α, the two zinc finger proteins with anti-inflammatory properties. Alternative NF-κB inhibitory mechanism is initiated by the inhibition of cyclic nucleotide phosphodiesterase, whereas another presumed mechanism consists in inhibition of IκB kinase in response to infection by zinc ions that have been imported into cells by ZIP8.


Biophysical Journal | 2003

Effects of a Carane Derivative Local Anesthetic on a Phospholipid Bilayer Studied by Molecular Dynamics Simulation

Marta Pasenkiewicz-Gierula; Tomasz Róg; Jacek Grochowski; Pawel Serda; Ryszard Czarnecki; Tadeusz Librowski; Stanisław Lochyński

Molecular dynamics (MD) simulations of two hydrated palmitoyloleoylphosphatidylcholine (POPC) bilayers each containing eight carane derivative (KP-23) local anesthetic (LA) molecules in neutral (POPC-LA) or protonated (POPC-LAH) forms were carried out to investigate the effect of KP-23 and its protonation on the bilayer. 3-ns trajectories were used for analyses. A pure POPC bilayer was employed as a reference system. In both POPC-LA and POPC-LAH systems a few KP-23 molecules intercalated into the bilayer and moved near the bilayer/water interface. They were located on the hydrophobic core side of the interface in the POPC-LA bilayer, but on the water phase side in the POPC-LAH bilayer. The order of the POPC chains was higher in the POPC-LA bilayer than in the pure POPC bilayer and was lower in the POPC-LAH bilayer. Interactions between polar groups of KP-23 and POPC or water were responsible for a lower hydration of POPC headgroups in POPC bilayers containing KP-23 than in the pure POPC bilayer. KP-23 molecules were found to form aggregates both in POPC-LA and POPC-LAH bilayers. Due to higher amphiphilicity of LAH, the LAH aggregate was more micelle-like and larger than the LA one. The results demonstrate the rapid timescales of the initial processes that take place at and near the bilayer interface as well as details of the atomic level interactions between local anesthetic and the lipid matrix of a cell membrane.


Pharmacological Reports | 2015

n-3 Fatty acids as resolvents of inflammation in the A549 cells

Joanna Gdula-Argasińska; Jacek Czepiel; Aneta Woźniakiewicz; Katarzyna Wojtoń; Agata Grzywacz; Michał Woźniakiewicz; Artur Jurczyszyn; William Perucki; Tadeusz Librowski

BACKGROUND Fatty acids and their derivatives are one of the most crucial inflammation mediators. The aim of our study was to evaluate the impact of polyunsaturated fatty acids as eicosanoids precursors on the A549 cell line. METHODS Cells were incubated with 40 μM of arachidonic, eicosapentaenoic or docosahexaenoic acid for 24h, then activated with LPS. Fatty acids content in the cell membranes were determined using gas chromatography. COX-2, cPGES and FP-receptor quantities were determined by Western blot. 8-Isoprostane F2α concentrations were determined by EIA. Maresin and protectin D1 contents were analyzed by UHPLC/MS-TOF method. RESULTS Significant differences in membrane fatty acids and levels of 8-isoPGF2α in the activated cells were detected. Elevated expression of COX-2 and FP-receptor was observed in cells treated with AA and activated with LPS. Moreover, compared to AA and AA+LPS groups, cells incubated with EPA, DHA, EPA+LPS and DHA+LPS showed decreased expression of COX-2, cPGES and FP-receptor. In cells incubated with EPA or DHA and activated with LPS maresin and protectin D1 were detected. CONCLUSIONS The results of the study have revealed the pro-inflammatory properties of AA, while the EPA and DHA had the opposite, resolving effect. Interestingly, FP-receptor inhibition by EPA and DHA demonstrated the unique role of the FP-receptor as a potential target for antagonists, in the diseases of inflammatory character. This study provides new information about n-3 fatty acids and their pro-resolving mediators, which can be used in the process of developing new anti-inflammatory drugs.


Mini-reviews in Medicinal Chemistry | 2014

An overview of the pharmacological properties and potential applications of natural monoterpenes.

Agata Kozioł; Agnieszka Stryjewska; Tadeusz Librowski; Kinga Sałat; Magdalena Gaweł; Andrzej Moniczewski; Stanisław Lochyński

Monoterpenes, the major components of essential oils, belong to the group of isoprenoids containing ten carbon atoms. Being widely distributed in the plant kingdom they are extensively used in cuisine and human health care products. Studies have shown that both natural monoterpenes and their synthetic derivatives are endowed with various pharmacological properties including antifungal, antibacterial, antioxidant, anticancer, antiarrhythmic, anti-aggregating, local anesthetic, antinociceptive, anti-inflammatory, antihistaminic and anti-spasmodic activities. Monoterpenes act also as regulators of growth, heat, transpiration, tumor inhibitors, inhibitors of oxidative phosphorylation, insect repellants, feline and canine attractants and antidiabetics. These interesting activities which might be potentially used not only in pharmaceutical, but also food and cosmetic industries are discussed below.

Collaboration


Dive into the Tadeusz Librowski's collaboration.

Top Co-Authors

Avatar

Kinga Sałat

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Stanisław Lochyński

Wrocław University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara Filipek

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Joanna Gdula-Argasińska

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Anna Lipkowska

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Gabriel Nowak

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrzej Moniczewski

Jagiellonian University Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge