Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tae Dong Kim is active.

Publication


Featured researches published by Tae Dong Kim.


Bioorganic & Medicinal Chemistry Letters | 2009

Synthesis and activity of N-oxalylglycine and its derivatives as Jumonji C-domain-containing histone lysine demethylase inhibitors

Shohei Hamada; Tae Dong Kim; Takayoshi Suzuki; Yukihiro Itoh; Hiroki Tsumoto; Hidehiko Nakagawa; Ralf Janknecht; Naoki Miyata

N-Oxalylglycine (NOG) derivatives were synthesized, and their inhibitory effect on histone lysine demethylase activity was evaluated. NOG and compound 1 inhibited histone lysine demethylases JMJD2A, 2C and 2D in enzyme assays, and their dimethyl ester prodrugs DMOG and 21 exerted histone lysine methylating activity in cellular assays.


Journal of Cellular Biochemistry | 2012

The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells

Tae Dong Kim; Sook Shin; William L. Berry; Sangphil Oh; Ralf Janknecht

JMJD2A is a transcriptional cofactor and enzyme that catalyzes demethylation of histone H3 lysines 9 and 36 and is overexpressed in human tumors, but its role in oncogenesis remains unclear. Here, we show that JMJD2A interacts with the tumor suppressor p53 both in vitro and in HCT116 colon cancer cells. Chromatin immunoprecipitation assays demonstrated that JMJD2A was recruited together with p53 to the promoter of the p21 cell cycle inhibitor upon stimulation with the DNA damaging agent, adriamycin. Downregulation of JMJD2A resulted in increased expression of p21 and of the pro‐apoptotic Puma protein, whereas levels of the anti‐apoptotic Bcl‐2 protein were decreased. Furthermore, JMJD2A knock‐down led to reduced HCT116, DLD‐1 and HT‐29 colon cancer cell proliferation, while overexpression of JMJD2A enhanced HCT116 proliferation in low serum media. Finally, JMJD2A depletion induced apoptosis in HCT116 cells and this effect was less pronounced in the absence of p53. Collectively, these data indicate that JMJD2A is a novel promoter of colon cancer cell proliferation and survival, which mediates its effects in p53‐dependent and ‐independent ways. JMJD2A may therefore be a valid target to sensitize tumor cells to chemotherapy‐induced cell death and growth suppression. J. Cell. Biochem. 113: 1368–1376, 2012.


Cancer Research | 2009

Induction of prostatic intraepithelial neoplasia and modulation of androgen receptor by ETS variant 1/ETS-related protein 81

Sook Shin; Tae Dong Kim; Jin Fang; Jan M. van Deursen; Scott M. Dehm; Donald J. Tindall; Joseph P. Grande; Jan Marie Munz; George Vasmatzis; Ralf Janknecht

ETS variant 1 (ETV1), also known as ETS-related protein 81, is overexpressed in prostate tumors, but whether and how this transcription factor affects tumorigenesis has remained elusive. Here, we show that ETV1 is primarily overexpressed in the most aggressive human prostate tumors. Transgenic ETV1 mice developed prostatic intraepithelial neoplasia as well as hyperplasia/neoplasia in seminal vesicles. Moreover, ETV1 cooperated with the androgen receptor (AR) to bind to the prostate-specific antigen enhancer and stimulate gene transcription. Consistent with its ability to physically interact with AR, ETV1 rendered an ETV1 binding site-driven reporter androgen inducible, and, on the other hand, ETV1 super-induced transcription from an AR binding site on androgen stimulation. In conclusion, our study substantiates that ETV1 overexpression is an underlying cause in the development of prostate and possibly also seminal vesicle cancer. Its interaction with and activation of AR provides a molecular mechanism on how ETV1 exerts its deleterious function. Thus, inhibiting ETV1 or blocking its interaction with AR may represent novel strategies in prostate cancer therapy.


PLOS ONE | 2012

Regulation of tumor suppressor p53 and HCT116 cell physiology by histone demethylase JMJD2D/KDM4D.

Tae Dong Kim; Sangphil Oh; Sook Shin; Ralf Janknecht

JMJD2D, also known as KDM4D, is a histone demethylase that removes methyl moieties from lysine 9 on histone 3 and from lysine 26 on histone 1.4. Here, we demonstrate that JMJD2D forms a complex with the p53 tumor suppressor in vivo and interacts with the DNA binding domain of p53 in vitro. A luciferase reporter plasmid driven by the promoter of p21, a cell cycle inhibitor and prominent target gene of p53, was synergistically activated by p53 and JMJD2D, which was dependent on JMJD2D catalytic activity. Likewise, overexpression of JMJD2D induced p21 expression in U2OS osteosarcoma cells in the absence and presence of adriamycin, an agent that induces DNA damage. Furthermore, downregulation of JMJD2D inhibited cell proliferation in wild-type and even more so in p53−/− HCT116 colon cancer cells, suggesting that JMJD2D is a pro-proliferative molecule. JMJD2D depletion also induced more strongly apoptosis in p53−/− compared to wild-type HCT116 cells. Collectively, our results demonstrate that JMJD2D can stimulate cell proliferation and survival, suggesting that its inhibition may be helpful in the fight against cancer. Furthermore, our data imply that activation of p53 may represent a mechanism by which the pro-oncogenic functions of JMJD2D become dampened.


Biochemical and Biophysical Research Communications | 2010

Histone demethylase JARID1B/KDM5B is a corepressor of TIEG1/KLF10.

Joanna Kim; Sook Shin; Malayannan Subramaniam; Elizabeth S. Bruinsma; Tae Dong Kim; John R. Hawse; Thomas C. Spelsberg; Ralf Janknecht

JARID1B/KDM5B (jumonji AT-rich interactive domain 1B/lysine-specific demethylase 5B) is an enzyme that efficiently removes methyl residues from trimethylated lysine 4 on histone H3, a pivotal mark for active chromatin. TIEG1/KLF10 (transforming growth factor-β inducible early gene-1/Krüppel-like transcription factor 10) is a zinc-finger transcription factor that is involved in bone metabolism and exerts antiproliferative activity. Here, we found that TIEG1 interacts with JARID1B. In particular, the repression domains of TIEG1 bind to the C-terminus of JARID1B. Moreover, overexpression of JARID1B augments TIEG1 to repress transcription of Smad7, an inhibitor of the TGF-β (transforming growth factor-β) signaling pathway. Conversely, JARID1B knock-down leads to increased Smad7 mRNA levels. Thus, TIEG1 and JARID1B may cooperate to suppress tumorigenesis by enhancing TGF-β signaling. Notably, both TIEG1 and JARID1B are downregulated in melanomas, suggesting that they indeed cooperate physiologically. In conclusion, JARID1B is the first TIEG1 corepressor identified, explaining how TIEG1 represses transcription through inducing histone H3 lysine 4 demethylation, which may be important for TIEG1 function in both normal and cancer cells.


International Journal of Oncology | 2014

Stimulation of β-catenin and colon cancer cell growth by the KDM4B histone demethylase

William L. Berry; Tae Dong Kim; Ralf Janknecht

The linchpin of colorectal cancer is the oncoprotein and transcriptional cofactor β-catenin, whose overexpression is causative for the neoplastic transformation of colon cells. However, the molecular details of β-catenin dependent gene transcription in cancer cells are still not comprehensively explored. Here, we show that the histone demethylase KDM4B was upregulated in colon and rectal adenocarcinomas and required for efficient growth and clonogenic activity of human HT-29 colon cancer cells. Moreover, KDM4B formed complexes with β-catenin in vitro and in vivo, which involved its central amino acids 353-740. In addition, KDM4B also interacted with the DNA-binding protein TCF4, which is the main factor recruiting β-catenin to chromatin in the intestine. KDM4B downregulation resulted in reduced expression of the β-catenin/TCF4 target genes JUN, MYC and Cyclin D1, all of which encode for oncoproteins. Collectively, our data indicate that KDM4B overexpression supports β-catenin mediated gene transcription and thereby contributes to the genesis of colorectal tumors. Accordingly, inhibition of the KDM4B histone demethylase may represent a novel avenue of fighting colorectal cancer, one of the major causes of cancer death throughout the world.


Journal of Clinical Investigation | 2016

Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1

Tae Dong Kim; Fang Jin; Sook Shin; Sangphil Oh; Stan Lightfoot; Joseph P. Grande; Aaron J. Johnson; Jan M. van Deursen; Jonathan D. Wren; Ralf Janknecht

Histone demethylase upregulation has been observed in human cancers, yet it is unknown whether this is a bystander event or a driver of tumorigenesis. We found that overexpression of lysine-specific demethylase 4A (KDM4A, also known as JMJD2A) was positively correlated with Gleason score and metastasis in human prostate tumors. Overexpression of JMJD2A resulted in the development of prostatic intraepithelial neoplasia in mice, demonstrating that JMJD2A can initiate prostate cancer development. Moreover, combined overexpression of JMJD2A and the ETS transcription factor ETV1, a JMJD2A-binding protein, resulted in prostate carcinoma formation in mice haplodeficient for the phosphatase and tensin homolog (Pten) tumor-suppressor gene. Additionally, JMJD2A cooperated with ETV1 to increase expression of yes associated protein 1 (YAP1), a Hippo pathway component that itself was associated with prostate tumor aggressiveness. ETV1 facilitated the recruitment of JMJD2A to the YAP1 promoter, leading to changes in histone lysine methylation in a human prostate cancer cell line. Further, YAP1 expression largely rescued the growth inhibitory effects of JMJD2A depletion in prostate cancer cells, indicating that YAP1 is a downstream effector of JMJD2A. Taken together, these data reveal a JMJD2A/ETV1/YAP1 axis that promotes prostate cancer initiation and that may be a suitable target for therapeutic inhibition.


Oncology Reports | 2016

ETS transcription factor ERG cooperates with histone demethylase KDM4A

Tae Dong Kim; Sook Shin; Ralf Janknecht

ERG (ETS-related gene) is a member of the ETS (erythroblast transformation-specific) family of transcription factors. Overexpression of the ERG transcription factor is observed in half of all prostate tumors and is an underlying cause of this disease. However, the mechanisms involved in the functions of ERG are still not fully understood. In the present study, we showed that ERG can directly bind to KDM4A (also known as JMJD2A), a histone demethylase that particularly demethylates lysine 9 on histone H3. ERG and KDM4A cooperated in upregulating the promoter of Yes-associated protein 1 (YAP1), a downstream effector in the Hippo signaling pathway and crucial growth regulator. Multiple ERG binding sites within the human YAP1 gene promoter were identified and their impact on transcription was determined through mutational analysis. Furthermore, we found that ERG expression reduced histone H3 lysine 9 trimethylation at the YAP1 gene promoter, consistent with its epigenetic regulation through the ERG interaction partner, KDM4A. Finally, downregulation of YAP1 phenocopied the growth-retarding effect of ERG or KDM4A depletion in human VCaP prostate cancer cells. Collectively, these results elucidated a novel mechanism - ERG promotes prostate tumorigenesis together with KDM4A through the upregulation of YAP1. A corollary is that KDM4A as well as YAP1 inhibitors may prove beneficial for the therapy of ERG-overexpressing prostate tumors.


Oncotarget | 2017

YAP1 inhibition radiosensitizes triple negative breast cancer cells by targeting the DNA damage response and cell survival pathways

Daniel Andrade; Meghna Mehta; James N. Griffith; Janani Panneerselvam; Akhil Srivastava; Tae Dong Kim; Ralf Janknecht; Terence S. Herman; Rajagopal Ramesh; Anupama Munshi

The Hippo pathway is an evolutionarily conserved signaling pathway that regulates proliferation and apoptosis to control organ size during developmental growth. Yes-associated protein 1 (YAP1), the terminal effector of the Hippo pathway, is a transcriptional co-activator and a potent growth promoter that has emerged as a critical oncogene. Overexpression of YAP1 has been implicated in promoting resistance to chemo-, radiation and targeted therapy in various cancers. However, the role of YAP1 in radioresistance in triple-negative breast cancer (TNBC) is currently unknown. We evaluated the role of YAP1 in radioresistance in TNBC in vitro, using two approaches to inhibit YAP1: 1) genetic inhibition by YAP1 specific shRNA or siRNA, and 2) pharmacological inhibition by using the small molecule inhibitor, verteporfin that prevents YAP1 transcriptional activity. Our findings demonstrate that both genetic and pharmacological inhibition of YAP1 sensitizes TNBC cells to radiation by inhibiting the EGFR/PI3K/AKT signaling axis and causing an increased accumulation of DNA damage. Our results reveal that YAP1 activation exerts a protective role for TNBC cells in radiotherapy and represents a pharmacological target to enhance the anti-tumor effects of DNA damaging modalities in the treatment of TNBC.


Biochemical and Biophysical Research Communications | 2008

Repression of Smad3 activity by histone demethylase SMCX/JARID1C.

Tae Dong Kim; Sook Shin; Ralf Janknecht

Collaboration


Dive into the Tae Dong Kim's collaboration.

Top Co-Authors

Avatar

Ralf Janknecht

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Sook Shin

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Sangphil Oh

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

William L. Berry

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Jonathan D. Wren

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stan Lightfoot

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akhil Srivastava

University of Oklahoma Health Sciences Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge