Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tae-gyu Nam is active.

Publication


Featured researches published by Tae-gyu Nam.


Proceedings of the National Academy of Sciences of the United States of America | 2008

In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen

David Plouffe; Achim Brinker; Case W. McNamara; Kerstin Henson; Nobutaka Kato; Kelli Kuhen; Advait Nagle; Francisco Adrian; Jason Matzen; Paul Anderson; Tae-gyu Nam; Nathanael S. Gray; Arnab K. Chatterjee; Jeff Janes; S. Frank Yan; Richard Trager; Jeremy S. Caldwell; Peter G. Schultz; Yingyao Zhou; Elizabeth A. Winzeler

The growing resistance to current first-line antimalarial drugs represents a major health challenge. To facilitate the discovery of new antimalarials, we have implemented an efficient and robust high-throughput cell-based screen (1,536-well format) based on proliferation of Plasmodium falciparum (Pf) in erythrocytes. From a screen of ≈1.7 million compounds, we identified a diverse collection of ≈6,000 small molecules comprised of >530 distinct scaffolds, all of which show potent antimalarial activity (<1.25 μM). Most known antimalarials were identified in this screen, thus validating our approach. In addition, we identified many novel chemical scaffolds, which likely act through both known and novel pathways. We further show that in some cases the mechanism of action of these antimalarials can be determined by in silico compound activity profiling. This method uses large datasets from unrelated cellular and biochemical screens and the guilt-by-association principle to predict which cellular pathway and/or protein target is being inhibited by select compounds. In addition, the screening method has the potential to provide the malaria community with many new starting points for the development of biological probes and drugs with novel antiparasitic activities.


Science | 2011

Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery

Stephan Meister; David Plouffe; Kelli Kuhen; Ghislain M. C. Bonamy; Tao Wu; S. Whitney Barnes; Selina Bopp; Rachel Borboa; A. Taylor Bright; Jianwei Che; Steve Cohen; Neekesh V. Dharia; Kerstin Gagaring; Montip Gettayacamin; Perry Gordon; Todd Groessl; Nobutaka Kato; Marcus C. S. Lee; Case W. McNamara; David A. Fidock; Advait Nagle; Tae-gyu Nam; Wendy Richmond; Jason Roland; Matthias Rottmann; Bin Zhou; Patrick Froissard; Richard Glynne; Dominique Mazier; Jetsumon Sattabongkot

Imidazolopiperazine compounds inhibit liver-stage malaria parasites with one oral dose in mice. Most malaria drug development focuses on parasite stages detected in red blood cells, even though, to achieve eradication, next-generation drugs active against both erythrocytic and exo-erythrocytic forms would be preferable. We applied a multifactorial approach to a set of >4000 commercially available compounds with previously demonstrated blood-stage activity (median inhibitory concentration < 1 micromolar) and identified chemical scaffolds with potent activity against both forms. From this screen, we identified an imidazolopiperazine scaffold series that was highly enriched among compounds active against Plasmodium liver stages. The orally bioavailable lead imidazolopiperazine confers complete causal prophylactic protection (15 milligrams/kilogram) in rodent models of malaria and shows potent in vivo blood-stage therapeutic activity. The open-source chemical tools resulting from our effort provide starting points for future drug discovery programs, as well as opportunities for researchers to investigate the biology of exo-erythrocytic forms.


ACS Chemical Biology | 2011

A Chemical Genomic Analysis of Decoquinate, a Plasmodium falciparum Cytochrome b Inhibitor

Tae-gyu Nam; Case W. McNamara; Selina Bopp; Neekesh V. Dharia; Stephan Meister; Ghislain M. C. Bonamy; David Plouffe; Nobutaka Kato; Susan McCormack; Badry Bursulaya; Hangjun Ke; Akhil B. Vaidya; Peter G. Schultz; Elizabeth A. Winzeler

Decoquinate has single-digit nanomolar activity against in vitro blood stage Plasmodium falciparum parasites, the causative agent of human malaria. In vitro evolution of decoquinate-resistant parasites and subsequent comparative genomic analysis to the drug-sensitive parental strain revealed resistance was conferred by two nonsynonymous single nucleotide polymorphisms in the gene encoding cytochrome b. The resultant amino acid mutations, A122T and Y126C, reside within helix C in the ubiquinol-binding pocket of cytochrome b, an essential subunit of the cytochrome bc1 complex. As with other cytochrome bc1 inhibitors, such as atovaquone, decoquinate has low nanomolar activity against in vitro liver stage P. yoelii and provides partial prophylaxis protection when administered to infected mice at 50 mg kg–1. In addition, transgenic parasites expressing yeast dihydroorotate dehydrogenase are >200-fold less sensitive to decoquinate, which provides additional evidence that this drug inhibits the parasite’s mitochondrial electron transport chain. Importantly, decoquinate exhibits limited cross-resistance to a panel of atovaquone-resistant parasites evolved to harbor various mutations in cytochrome b. The basis for this difference was revealed by molecular docking studies, in which both of these inhibitors were shown to have distinctly different modes of binding within the ubiquinol-binding site of cytochrome b.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2016

Natural, semisynthetic and synthetic tyrosinase inhibitors

Sang Yeul Lee; Namhuk Baek; Tae-gyu Nam

Abstract Tyrosinase plays a pivotal role in the synthesis of melanin pigment synthesis on skin utilizing tyrosine as a substrate. Melanin is responsible for the protection against harmful ultraviolet irradiation, which can cause significant pathological conditions, such as skin cancers. However, it can also create esthetic problems when accumulated as hyperpigmented spots. Various skin-whitening ingredients which inhibit tyrosinase activity have been identified. Some of them, especially ones with natural product origins, possess phenolic moiety and have been employed in cosmetic products. Semi-synthetic and synthetic inhibitors have also been developed under inspiration of the natural inhibitors yet some of which have no phenolic groups. In this review, tyrosinase inhibitors with natural, semi-synthetic and synthetic origins are listed up with their structures, activities and characteristics. Further, a recent report on the adverse effect of a natural melanin synthesis inhibitor which was included in skin-whitening cosmetics is also briefly discussed.


Chemistry: A European Journal | 2010

Preparation and Investigation of Vitamin B6-Derived Aminopyridinol Antioxidants

Remigiusz Serwa; Tae-gyu Nam; Luca Valgimigli; Sean M. Culbertson; Christopher L. Rector; Byeong Seon Jeong; Derek A. Pratt; Ned A. Porter

3-Pyridinols bearing amine substitution para to the hydroxylic moiety have previously been shown to inhibit lipid peroxidation more effectively than typical phenolic antioxidants, for example, α-tocopherol. We report here high-yielding, large-scale syntheses of mono- and bicyclic aminopyridinols from pyridoxine hydrochloride (i.e., vitamin B(6)). This approach provides straightforward, scaleable access to novel, potent, molecular scaffolds whose antioxidant properties have been investigated in homogeneous solutions and in liposomal vesicles. These molecular aggregates mimic cell membranes that are the targets of oxidative damage in vivo.


Organic and Biomolecular Chemistry | 2009

Pyridine and pyrimidine analogs of acetaminophen as inhibitors of lipid peroxidation and cyclooxygenase and lipoxygenase catalysis.

Tae-gyu Nam; Susheel J. Nara; Irene Zagol-Ikapitte; Thomas Cooper; Luca Valgimigli; John A. Oates; Ned A. Porter; Olivier Boutaud; Derek A. Pratt

Herein we report an investigation of the efficacy of pyridine and pyrimidine analogs of acetaminophen (ApAP) as peroxyl radical-trapping antioxidants and inhibitors of enzyme-catalyzed lipid peroxidation by cyclooxygenases (COX) and lipoxygenases (LOX). In inhibited autoxidations we find that ApAP, the common analgesic and antipyretic agent, is a very good antioxidant with a rate constant for reaction with peroxyl radicals (k(inh) = 5 x 10(5) M(-1) s(-1)) that is higher than many widely-used phenolic antioxidants, such as the ubiquitous butylated hydroxytoluene (BHT). This reactivity is reduced substantially upon incorporation of nitrogen into the phenolic ring, owing to an increase in the O-H bond dissociation enthalpy of pyridinols and pyrimidinols with respect to phenols. Incorporation of nitrogen into the phenolic ring of ApAP was also found to decrease its efficacy as an inhibitor of prostaglandin biosynthesis by ovine COX-1 (oCOX-1). This is explained on the basis of an increase in its oxidation potential and its reduced reactivity as a reducing co-substrate of the peroxidase protoporphyrin. In contrast, the efficacy of ApAP as an inhibitor of lipid hydroperoxide biosynthesis by soybean LOX-1 (sLOX-1) increased upon incorporation of nitrogen into the ring, suggesting a different mechanism of inhibition dependent on the acidity of the phenolic O-H which may involve chelation of the catalytic non-heme iron atom. The greater stability of the 3-pyridinols and 5-pyrimidinols to air oxidation as compared to phenols allowed us to evaluate some electron-rich pyridinols and pyrimidinols as inhibitors of oCOX-1 and sLOX-1. While the pyridinols had the best combination of activities as antioxidants and inhibitors of oCOX-1 and sLOX-1, they were found to be more toxic than ApAP in preliminary assays in human hepatocellular carcinoma (HepG2) cell culture. The pyrimidinols, however, were up to 17-fold more reactive to peroxyl radicals and up to 25-fold better inhibitors of prostaglandin biosynthesis than ApAP, with similar cytotoxicities to HepG2 cells at high levels of exposure.


European Journal of Medicinal Chemistry | 2014

6-Amino-2,4,5-trimethylpyridin-3-ols: A new general synthetic route and antiangiogenic activity

Dong-Guk Kim; Youra Kang; Hyunji Lee; Eunkyung Lee; Tae-gyu Nam; Jung-Ae Kim; Byeong-Seon Jeong

A new synthetic strategy for preparation of a wide range of 6-amino-2,4,5-trimethylpyridin-3-ols from pyridoxine·HCl via a six-step sequence has been developed. This approach features an introduction of various amino groups to C(6)-position of 3-benzyloxy-6-bromo-2,4,5-trimethylpyridine (13), a key intermediate, by a Buchwald-Hartwig amination reaction using palladium(0) transition metal, which certainly renders an expanded scope of amino substituents. Some analogs prepared using the methods described here showed high level of antiangiogenic and antitumor activities in chick chorioallantoic membrane (CAM) assay, demonstrating the potential of these new aminopyridinols as antiangiogenic agents.


Free Radical Biology and Medicine | 2010

Action of 6-amino-3-pyridinols as novel antioxidants against free radicals and oxidative stress in solution, plasma, and cultured cells

Yo Omata; Yoshiro Saito; Yasukazu Yoshida; Byeong-Seon Jeong; Remigiusz Serwa; Tae-gyu Nam; Ned A. Porter; Etsuo Niki

Free radical-mediated lipid peroxidation has been implicated in the pathogenesis of various diseases. Lipid peroxidation products are cytotoxic and they modify proteins and DNA bases, leading eventually to degenerative disorders. Various synthetic antioxidants have been developed and assessed for their capacity to inhibit lipid peroxidation and oxidative stress induced by free radicals. In this study, the capacity of novel 6-amino-2,4,5-trimethyl-3-pyridinols for scavenging peroxyl radicals, inhibiting plasma lipid peroxidation in vitro, and preventing cytotoxicity induced by glutamate, 6-hydroxydopamine, 1-methyl-4-phenylpyridium (MPP(+) ), and hydroperoxyoctadecadienoic acid was assessed. It was found that they exerted higher reactivity toward peroxyl radicals and more potent activity for inhibiting the above oxidative stress than alpha-tocopherol, the most potent natural antioxidant, except against the cytotoxicity induced by MPP(+). These results suggest that the novel 6-amino-3-pyridinols may be potent antioxidants against oxidative stress.


Toxicological research | 2011

Lipid Peroxidation and Its Toxicological Implications

Tae-gyu Nam

Lipid peroxidation is a free radical oxidation of polyunsaturated fatty acids such as linoleic acid or arachidonic acid. This process has been related with various pathologies and disease status mainly because of the oxidation products formed during the process. The oxidation products include reactive aldehydes such as malondialdehyde and 4-hydroxynonenal. These reactive aldehydes can form adducts with DNAs and proteins, leading to the alterations in their functions to cause various diseases. This review will provide a short summary on the implication of lipid peroxidation on cancer, atherosclerosis, and neurodegeneration as well as chemical and biochemical mechanisms by which these adducts affect the pathological conditions. In addition, select examples will be presented where antioxidants were used to counteract oxidative damage caused by lipid peroxidation. At the end, isoprostanes are discussed as a gold standard for the assessment of oxidative damages.


PLOS ONE | 2016

BJ-1108, a 6-Amino-2,4,5-Trimethylpyridin-3-ol Analog, Inhibits Serotonin-Induced Angiogenesis and Tumor Growth through PI3K/NOX Pathway

Suhrid Banskota; Jaya Gautam; Sushil Chandra Regmi; Pallavi Gurung; Myo-Hyeon Park; Seung Joo Kim; Tae-gyu Nam; Byeong-Seon Jeong; Jung-Ae Kim

5-Hydroxytryptamine (5-HT) induces proliferation of cancer cells and vascular cells. In addition to 5-HT production by several cancer cells including gastrointestinal and breast cancer, a significant level of 5-HT is released from activated platelets in the thrombotic environment of tumors, suggesting that inhibition of 5-HT signaling may constitute a new target for antiangiogenic anticancer drug discovery. In the current study we clearly demonstrate that 5-HT-induced angiogenesis was mediated through the 5-HT1 receptor-linked Gβγ/Src/PI3K pathway, but not through the MAPK/ERK/p38 pathway. In addition, 5-HT induced production of NADPH oxidase (NOX)-derived reactive oxygen species (ROS). In an effort to develop new molecularly targeted anticancer agents against 5-HT action in tumor growth, we demonstrate that BJ-1108, a derivative of 6-amino-2,4,5-trimethylpyridin-3-ol, significantly inhibited 5-HT-induced angiogenesis. In addition, BJ-1108 induced a significant reduction in the size and weight of excised tumors in breast cancer cell-inoculated CAM assay, showing proportionate suppression of tumor growth along with inhibition of angiogenesis. In human umbilical vein endothelial cells (HUVECs), BJ-1108 significantly suppressed 5-HT-induced ROS generation and phosphorylation of PI3K/Akt but not of Src. Unlike NOX inhibitors, BJ-1108, which showed better antioxidant activity than vitamin C, barely suppressed superoxide anion induced by mevalonate or geranylgeranyl pyrophosphate which directly activates NOX without help from other signaling molecules in HUVECs, implying that the anti-angiogenic action of BJ-1108 was not mediated through direct action on NOX activation, or free radical scavenging activity. In conclusion, BJ-1108 inhibited 5-HT-induced angiogenesis through PI3K/NOX signaling but not through Src, ERK, or p38.

Collaboration


Dive into the Tae-gyu Nam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin-Mo Ku

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter G. Schultz

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge