Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tae-Hwe Heo is active.

Publication


Featured researches published by Tae-Hwe Heo.


Biochemical and Biophysical Research Communications | 2011

Protective potential of resveratrol against oxidative stress and apoptosis in Batten disease lymphoblast cells

Dong-Ho Yoon; Oh-Youn Kwon; Ji Young Mang; Myung Jin Jung; Do Yeon Kim; Yoon Kyung Park; Tae-Hwe Heo; Sung-Jo Kim

Batten disease (BD) is the most common form of a group of disorders called neuronal ceroid lipofuscinosis, which are caused by a CLN3 gene mutation. A variety of pathogenic lysosomal storage disorder mechanisms have been suggested such as oxidative stress, endoplasmic reticulum (ER) stress, and altered protein trafficking. Resveratrol, a stilbenoid found in red grape skin, is a potent antioxidant chemical. Recent studies have suggested that resveratrol may have a curative effect in many neurodegenerative diseases. Therefore, we investigated the activities of resveratrol at the levels of oxidative and ER stress and apoptosis factors using normal and BD lymphoblast cells. We report that the BD lymphoblast cells contained low-levels of superoxide dismutase-1 (SOD-1) due to the long-term stress of reactive oxygen species. However, when we treated the cells with resveratrol, SOD-1 increased to levels observed in normal cells. Furthermore, we investigated the expression of glucose-regulated protein 78 as an ER stress marker. BD cells underwent ER stress, but resveratrol treatment resolved the ER stress in a dose-dependent manner. We further demonstrated that the levels of apoptosis markers such as apoptosis induce factor, cytochrome c, and cleavage of poly (ADP)-ribose polymerase decreased following resveratrol treatment. Thus, we propose that resveratrol may have beneficial effects in patients with BD.


Chemico-Biological Interactions | 2012

Hepatic expression of cytochrome P450 in type 2 diabetic Goto-Kakizaki rats.

Soo Jin Oh; Jong Min Choi; Kang Uk Yun; Jung Min Oh; Hui Chan Kwak; Jin-Gyo Oh; Kye Sook Lee; Bong-Hee Kim; Tae-Hwe Heo; Sang Kyum Kim

Although hepatic expression of cytochrome P450 (CYP) changes markedly in diabetes, the role of ketone bodies in the regulation of CYP in diabetes is controversial. The present study was performed to determine the expression and activity of CYP in non-obese type II diabetic Goto-Kakizaki (GK) rats with normal levels of ketone bodies. In the present study, basal serum glucose levels increased 1.95-fold in GK rats, but acetoacetate and β-hydroxybutyrate levels were not significantly different. Hepatic expression of CYP reductase and CYP3A2 was up-regulated in the GK rats, and consequently, activities of CYP reductase and midazolam 4-hydroxylase, mainly catalyzed by CYP3A2, increased. In contrast, hepatic expression of CYP1A2 and CYP3A1 was down-regulated and the activities of 7-ethoxyresorufin-O-deethylase and 7-methoxyresorufin-O-demethylase, mainly catalyzed by CYP1A, also decreased in GK rats. Hepatic levels of microsomal protein and total CYP and hepatic expression of cytochrome b(5), CYP1B1, CYP2B1 and CYP2C11 were not significantly different between the GK rats and normal Wistar rats. Moreover, the expression and activity of CYP2E1, reported to be up-regulated in diabetes with hyperketonemia, were not significantly different between GK rats and control rats, suggesting that elevation of ketone bodies plays a critical role in the up-regulation of hepatic CYP2E1 in diabetic rats. Our results showed that the expression of hepatic CYP is regulated in an isoform-specific manner. The present results also show that the GK rat is a useful animal model for the pathophysiological study of non-obese type II diabetes with normal ketone body levels.


In Vitro Cellular & Developmental Biology – Animal | 2016

Fibrates inhibit the apoptosis of Batten disease lymphoblast cells via autophagy recovery and regulation of mitochondrial membrane potential

Minho Hong; Ki Duk Song; Hak-Kyo Lee; SunShin Yi; Yong Seok Lee; Tae-Hwe Heo; Hyun Sik Jun; Sung-Jo Kim

Batten disease (BD; also known as juvenile neuronal ceroid lipofuscinosis) is a genetic disorder inherited as an autosomal recessive trait and is characterized by blindness, seizures, cognitive decline, and early death resulting from the inherited mutation of the CLN3 gene. Mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, disrupted autophagy, and enhanced apoptosis have been suggested to play a role in BD pathogenesis. Fibrates, a class of lipid-lowering drugs that induce peroxisome proliferator-activated receptor-α (PPAR-α) activation, are the most commonly used PPAR agonists. Assuming that fibrates have a neuroprotective effect, we studied the effects of fibrates, fenofibrate, bezafibrate, and gemfibrozil on apoptosis, depolarization of mitochondrial membrane, and defective autophagy in BD lymphoblast cells. The viability of fibrate-treated BD lymphoblast cells increased to levels of normal lymphoblast cells. In addition, treatment with fibrates inhibited depolarization of mitochondrial membrane potential in BD lymphoblast cells. Defective autophagy in BD lymphoblast cells was normalized when treated with fibrates as indicated by increased acridine orange staining. The recovery of autophagy in BD lymphoblast cells is most likely attributed to the upregulation of autophagy proteins, lysosomal-associated membrane protein 1 (LAMP1), and LC3 I/II, after treatment with fibrates. This study therefore suggests that fibrates may have a therapeutic potential against BD.


PLOS ONE | 2015

NRF2 Signaling Negatively Regulates Phorbol-12-Myristate-13-Acetate (PMA)-Induced Differentiation of Human Monocytic U937 Cells into Pro-Inflammatory Macrophages.

Mingu Song; In-geun Ryoo; Hye-young Choi; Bo-hyun Choi; Sang-Tae Kim; Tae-Hwe Heo; Joo Young Lee; Pil-Hoon Park; Mi-Kyoung Kwak

Blood monocytes are recruited to injured tissue sites and differentiate into macrophages, which protect against pathogens and repair damaged tissues. Reactive oxygen species (ROS) are known to be an important contributor to monocytes’ differentiation and macrophages’ function. NF-E2-related factor 2 (NRF2), a transcription factor regulating cellular redox homeostasis, is known to be a critical modulator of inflammatory responses. We herein investigated the role of NRF2 in macrophage differentiation using the human monocytic U937 cell line and phorbol-12-myristate-13-acetate (PMA). In U937 cells with NRF2 silencing, PMA-stimulated cell adherence was significantly facilitated when compared to control U937 cells. Both transcript and protein levels for pro-inflammatory cytokines, including interleukine-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNFα) were highly elevated in PMA-stimulated NRF2-silenced U937 compared to the control. In addition, PMA-inducible secretion of monocyte chemotactic protein 1 (MCP-1) was significantly high in NRF2-silenced U937. As an underlying mechanism, we showed that NRF2-knockdown U937 retained high levels of cellular ROS and endoplasmic reticulum (ER) stress markers expression; and subsequently, PMA-stimulated levels of Ca2+ and PKCα were greater in NRF2-knockdown U937 cells, which caused enhanced nuclear accumulation of nuclear factor-ҡB (NFҡB) p50 and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation. Whereas the treatment of NRF2-silenced U937 cells with pharmacological inhibitors of NFҡB or ERK1/2 largely blocked PMA-induced IL-1β and IL-6 expression, indicating that these pathways are associated with cell differentiation. Taken together, our results suggest that the NRF2 system functions to suppress PMA-stimulated U937 cell differentiation into pro-inflammatory macrophages and provide evidence that the ROS-PKCα-ERK-NFҡB axis is involved in PMA-facilitated differentiation of NRF2-silenced U937 cells.


Neurochemistry International | 2013

Batten disease is linked to altered expression of mitochondria-related metabolic molecules.

Sunyang Kang; Jae Hong Seo; Tae-Hwe Heo; Sung-Jo Kim

Batten disease (BD)--also known as juvenile neuronal ceroid lipofuscinoses-is an inherited neurodegenerative disorder caused by CLN3 gene mutations. Although CLN3-related oxidative and mitochondrial stresses have been studied in BD, the pathologic mechanism of the disease is not clearly understood. To address the molecular factors linked to high levels of oxidative stress in BD, we examined the expression of mitochondria-related metabolic molecules, including pyruvate dehydrogenase (PDH), ATP citrate lyase (ACL), and phosphoenolpyruvate carboxykinase (PEPCK), as well as the apoptosis-related ganglioside, acetyl-GD3. We observed an increased expression of PDH and a decreased expression of ACL, PEPCK, and acetyl-GD3 in BD lymphoblast cells compared to normal cells, possibly resulting in the high ROS levels, mitochondrial membrane depolarization, and apoptosis typically found in BD.


Gene | 2014

Altered levels of α-synuclein and sphingolipids in Batten disease lymphoblast cells.

Sunyang Kang; Tae-Hwe Heo; Sung-Jo Kim

Batten disease (juvenile neuronal ceroid lipofuscinosis) is a neurodegenerative disorder characterized by blindness, seizures, cognitive decline, and early death due to the inherited mutation of the CLN3 gene. Although α-synuclein and sphingolipids are relevant for the pathogenesis of some neuronal disorders, little attention has been paid to their role in Batten disease. To identify the molecular factors linked to autophagy and apoptotic cell death in Batten disease, the levels of α-synuclein, sphingomyelin, and gangliosides were examined. We observed enhanced levels of α-synuclein oligomers and gangliosides GM1, GM2, and GM3 and reduced levels of sphingomyelin and autophagy in Batten disease lymphoblast cells compared with normal lymphoblast cells, possibly resulting in a higher rate of apoptosis typically found in Batten disease lymphoblast cells.


Biochemical and Biophysical Research Communications | 2011

Protective effect of catechin in type I Gaucher disease cells by reducing endoplasmic reticulum stress

Yea-Jin Lee; Sung-Jo Kim; Tae-Hwe Heo

Gaucher disease (GD) is the most common lysosomal storage disorder (LSD) and is divided into three phenotypes, I, II, and III. Type I is the most prevalent form and has its onset in adulthood. The degree of endoplasmic reticulum (ER) stress is one of the factors that determine GD severity. It has recently been reported that antioxidants reduce ER stress and apoptosis by scavenging the oxidants that cause oxidative stress. For this report, we investigated the possibility that catechin can act on type I GD patient cells to alleviate the pathogenic conditions of GD. We treated GD cells with catechin and examined the expression level of GRP78/BiP (an ER stress marker) by western blots and fluorescence microscopy, the proliferation rate of GD cells, and scratch-induced wound healing activity. Our results show that catechin reduces the expression level of GRP78/BiP, leads to cell proliferation rates of GD cells similar levels to normal cells, and improves wound healing activity. We conclude that catechin protects against ER stress in GD cells and catechin-mediated reductions in ER stress may be associated with enhanced cell survival.


British Journal of Pharmacology | 2015

Identification of a resveratrol tetramer as a potent hepatitis C virus helicase inhibitor

Sungjin Lee; Kee Dong Yoon; Myungeun Lee; Yoojin Cho; Gahee Choi; Hongje Jang; Beom Seok Kim; Da‐Hee Jung; Jin-Gyo Oh; Geon-Woo Kim; Jong-Won Oh; Yong-Joo Jeong; Ho Jeong Kwon; Soo Kyung Bae; Dal-Hee Min; Marc P. Windisch; Tae-Hwe Heo; Choongho Lee

Hepatitis C virus (HCV) infection is responsible for various chronic inflammatory liver diseases. Here, we have identified a naturally occurring compound with anti‐HCV activity and have elucidated its mode of antiviral action.


Gene | 2013

Cell cycle arrest in Batten disease lymphoblast cells.

Sunyang Kang; June-Bum Kim; Tae-Hwe Heo; Sung-Jo Kim

Batten disease is an inherited neurodegenerative disorder caused by a CLN3 gene mutation. Batten disease is characterized by blindness, seizures, cognitive decline, and early death. Although apoptotic cell death is one of the pathological hallmarks of Batten disease, little is known about the regulatory mechanism of apoptosis in this disease. Since the CLN3 gene is suggested to be involved in the cell cycle in a yeast model, we investigated the cell cycle profile and its regulatory factors in lymphoblast cells from Batten disease patients. We found G1/G0 cell cycle arrest in Batten disease cells, with overexpression of p21, sphingosine, glucosylceramide, and sulfatide as possible cell cycle regulators.


Muscle & Nerve | 2012

NORMOKALEMIC PERIODIC PARALYSIS IS NOT A DISTINCT DISEASE

Young‐Wha Song; Sung-Jo Kim; Tae-Hwe Heo; Man‐Ho Kim; June-Bum Kim

Introduction: Recent molecular studies of the original cases of normokalemic periodic paralysis (normoKPP) have raised suspicions that these families actually had hyperkalemic periodic paralysis (hyperKPP) due to mutations in the skeletal muscle sodium channel gene SCN4A. However, there is still a debate about the existence of normoKPP. Methods: We screened 230 individuals with primary periodic paralysis for mutations in the SCN4A, CACNA1S, and KCNJ2 genes. All patients had either a hyperKPP or a hypoKPP phenotype, and none had a normoKPP phenotype. Results: In 4 hyperKPP patients from 2 families, molecular analyses revealed Arg675Gly and Arg675Gln mutations of SCN4A, which were previously reported to cause normoKPP. Each patient exhibited the characteristic clinical and laboratory features (including hyperkalemia during spontaneous attacks) of hyperKPP. Conclusion: Our findings support the notion that normoKPP is not a distinct disease. Muscle Nerve, 2012

Collaboration


Dive into the Tae-Hwe Heo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hak-Kyo Lee

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Jin-Gyo Oh

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Ki Duk Song

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Kyung-Yeon Park

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

June-Bum Kim

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Euichaul Oh

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Sang Kyum Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge