Tae Jung Park
Chung-Ang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tae Jung Park.
ACS Nano | 2010
Bong Gill Choi; Ho Seok Park; Tae Jung Park; Min Ho Yang; Joon Sung Kim; Sung-Yeon Jang; Nam Su Heo; Sang Yup Lee; Jing Kong; Won Hi Hong
We report the preparation of free-standing flexible conductive reduced graphene oxide/Nafion (RGON) hybrid films by a solution chemistry that utilizes self-assembly and directional convective-assembly. The hydrophobic backbone of Nafion provided well-defined integrated structures, on micro- and macroscales, for the construction of hybrid materials through self-assembly, while the hydrophilic sulfonate groups enabled highly stable dispersibility ( approximately 0.5 mg/mL) and long-term stability (2 months) for graphene. The geometrically interlocked morphology of RGON produced a high degree of mechanical integrity in the hybrid films, while the interpenetrating network constructed favorable conduction pathways for charge transport. Importantly, the synergistic electrochemical characteristics of RGON were attributed to high conductivity (1176 S/m), facilitated electron transfer (ET), and low interfacial resistance. Consequently, RGON films obtained the excellent figure of merit as electrochemical biosensing platforms for organophosphate (OP) detection, that is, a sensitivity of 10.7 nA/microM, detection limit of 1.37 x 10(-7) M, and response time of <3 s. In addition, the reliability of RGON biosensors was confirmed by a fatigue test of 100 bending cycles. The strategy described here provides insight into the fabrication of graphene and hybrid nanomaterials from a material perspective, as well as the design of biosensor platforms for practical device applications.
Nano Letters | 2010
Jae-Hyuk Ahn; Sung-Jin Choi; Jin-Woo Han; Tae Jung Park; Sang Yup Lee; Yang-Kyu Choi
A silicon nanowire field effect transistor (FET) straddled by the double-gate was demonstrated for biosensor application. The separated double-gates, G1 (primary) and G2 (secondary), allow independent voltage control to modulate channel potential. Therefore, the detection sensitivity was enhanced by the use of G2. By applying weakly positive bias to G2, the sensing window was significantly broadened compared to the case of employing G1 only, which is nominally used in conventional nanowire FET-based biosensors. The charge effect arising from biomolecules was also analyzed. Double-gate nanowire FET can pave the way for an electrically working biosensor without a labeling process.
ACS Nano | 2013
Bong Gill Choi; MinHo Yang; Sung Chul Jung; Kyoung G. Lee; Jin-Gyu Kim; Ho Seok Park; Tae Jung Park; Sang Bok Lee; Young-Kyu Han; Yun Suk Huh
Development of nanostructured materials with enhanced redox reaction capabilities is important for achieving high energy and power densities in energy storage systems. Here, we demonstrate that the nanohybridization of ionic liquids (ILs, 1-butyl-3-methylimidazolium tetrafluoroborate) and cobalt hydroxide (Co(OH)2) through ionothermal synthesis leads to a rapid and reversible redox reaction. The as-synthesized IL-Co(OH)2 has a favorable, tailored morphology with a large surface area of 400.4 m(2)/g and a mesopore size of 4.8 nm. In particular, the IL-Co(OH)2-based electrode exhibits improvement in electrochemical characteristics compared with bare Co(OH)2, showing a high specific capacitance of 859 F/g at 1 A/g, high-rate capability (∼95% retention at 30 A/g), and excellent cycling performance (∼96% retention over 1000 cycles). AC impedance analysis demonstrates that the introduction of ILs on Co(OH)2 facilitates ion transport and charge transfer: IL-Co(OH)2 shows a higher ion diffusion coefficient (1.06 × 10(-11) cm(2)/s) and lower charge transfer resistance (1.53 Ω) than those of bare Co(OH)2 (2.55 × 10(-12) cm(2)/s and 2.59 Ω). Our density functional theory (DFT) calculations reveal that the IL molecules, consisting of anion and cation groups, enable easier hydrogen desorption/adsorption process, that is, a more favorable redox reaction on the Co(OH)2 surface.
Applied Microbiology and Biotechnology | 2016
Tae Jung Park; Kyoung G. Lee; Sang Yup Lee
Metal nanoparticles are garnering considerable attention owing to their high potential for use in various applications in the material, electronics, and energy industries. Recent research efforts have focused on the biosynthesis of metal nanomaterials using microorganisms rather than traditional chemical synthesis methods. Microorganisms have evolved to possess molecular machineries for detoxifying heavy metals, mainly by employing metal-binding proteins and peptides. Biosynthesis of diverse metal nanoparticles has recently been demonstrated using such heavy metal detoxification systems in microorganisms, which provides several advantages over the traditional chemical synthesis methods. First, metal nanoparticles can be synthesized at mild temperatures, such as at room temperature, with less energy input. Second, no toxic chemicals or reagents are needed, and thus the process is environmentally friendly. Third, diverse metal nanoparticles, including those that have never been chemically synthesized, can be biosynthesized. Here, we review the strategies for the biosynthesis of metal nanoparticles using microorganisms, and provide future prospects.
Small | 2012
Byoung-Hwa Kwon; Kyoung G. Lee; Tae Jung Park; Hyunki Kim; Tae Jae Lee; Seok Jae Lee; Duk Young Jeon
For the continuous production of quantum dots (QDs), continuous-fl ow microfl uidic reaction systems have been recognized as an effective and alternative strategy to the conventional batch systems due to precise controllability of reaction conditions, including high heat and mass transfer, temperature control, high surface-to-volume ratio, effi cient mixing, low reagent consumption, and continuous production. [ 1 , 2 ] In addition, the microfl uidic reaction system provides easy scale-up and reduces the reaction time, which is highly suitable for the large quantity production of monodisperse QDs for industrial applications in electronics and the life sciences. [ 3 ] Unfortunately, the most composition of previously synthesized QDs is mainly dedicated to Cd chalcogenide material, which is known to be a hazardous substance and to cause serious health problems and is therefore applied in limited applications. [ 4 ] In addition, research on blue-emission QDs has remained elusive because it is diffi cult to synthesize small sizes ( < 1.6 nm) of CdSe-based QDs that have a narrow size distribution and high quantum effi ciency. [ 5 ] Furthermore, several reported continuous reaction systems required more than two reactors or complex synthetic procedures, which may limit to produce core/shell QDs. [ 6 ]
Nanoscale | 2012
Gle Park; Leian Bartolome; Kyoung G. Lee; Seok Jae Lee; Do Hyun Kim; Tae Jung Park
Ultrasound-assisted synthesis of a graphene oxide (GO)-manganese oxide nanocomposite (GO-Mn(3)O(4)) was conducted without further modification of GO or employing secondary materials. With the GO nanoplate as a support, potassium permanganate oxidizes the carbon atoms in the GO support and gets reduced to Mn(3)O(4). An intensive ultrasound method could reduce the number of reaction steps and temperature, enhance the reaction rate and furthermore achieve a Mn(3)O(4) phase. The composite was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The coverage and crystallinity of Mn(3)O(4) were controlled by changing the ratio of permanganate to GO dispersion. The synthesized nanocomposite was used as a catalyst for poly(ethylene terephthalate) (PET) depolymerization into its monomer, bis(2-hydroxylethyl) terephthalate (BHET). The highest monomer yield of 96.4% was obtained with the nanocomposite containing the lowest amount of Mn(3)O(4), while PET glycolysis with the Mn(3)O(4) without GO yielded 82.7% BHET.
ACS Nano | 2010
Kyoung G. Lee; Rinbok Wi; Muhammad Imran; Tae Jung Park; Jaebeom Lee; Sang Yup Lee; Do Hyun Kim
Silica nanorods were successfully prepared through a sol-gel process in the presence of carboxylic-functionalized single-walled carbon nanotubes (C-SWCNTs). The effect of chemical functionalization of single-walled carbon nanotubes (SWCNTs) on the growth of the silica layer was investigated using pristine SWCNTs (P-SWCNTs) and C-SWCNTS. The C-SWCNTs served as a unique template to fabricate silica hybrid composite materials. The crystalline formation and growing mechanism of the silica layer on C-SWCNTs were explained by the hydrolysis and chemical bonding between silica precursors and carboxylated SWCNTs. The C-SWCNTs, as templates, were successfully encapsulated using silica, and used templates were removed by oxidation at high temperature. Finally, silica nanorods/nanowires were synthesized in forms of mold, and this silica fabrication mechanism could be applied for large-scale production of silica nanomaterials and highly flexible nanocomposites. The sequence of a silica encapsulation process of C-SWCNTs and removed C-SWCNTs was characterized using SEM, TEM, EDX, FT-IR and Raman spectroscopy, XRD, and electrical analysis.
Biosensors and Bioelectronics | 2017
Hye Jin Hwang; Myung Yi Ryu; Chan Young Park; Junki Ahn; Hyun Gyu Park; Changsun Choi; Sang-Do Ha; Tae Jung Park; Jong Pil Park
Norovirus is known as the major cause of highly infection for gastrointestinal tracts. In this study, robust and highly sensitive biosensors for detecting human norovirus by employing a recognition affinity peptide-based electrochemical platform were described. A series of amino acid-substituted and cysteine-incorporated recognition peptides isolated from evolutionary phage display technique was chemically synthesized and immobilized to a gold sensor layer, the detection performance of the gold-immobilized synthetic peptide-based sensor system was assessed using QCM, CV and EIS. Using EIS, the limit of detection with Noro-1 as a molecular binder was found to be 99.8nM for recombinant noroviral capsid proteins (rP2) and 7.8copies/mL for human norovirus, thereby demonstrating a high degree of sensitivity for their corresponding targets. These results suggest that a biosensor which consists of affinity peptides as a molecular binder and miniaturized microdevices as diagnostic tool could be served as a new type of biosensing platform for point-of-care testing.
Nature Communications | 2014
Hyesung Cho; Junsoo Kim; Hyun-Chul Park; Jung Won Bang; Moon Seop Hyun; Yongjun Bae; Laura Ha; Do Yoon Kim; Seong Min Kang; Tae Jung Park; Soonmin Seo; Mansoo Choi; Kahp-Yang Suh
Membranes with nano-apertures are versatile templates that possess a wide range of electronic, optical and biomedical applications. However, such membranes have been limited to silicon-based inorganic materials to utilize standard semiconductor processes. Here we report a new type of flexible and free-standing polymeric membrane with nano-apertures by exploiting high-wettability difference and geometrical reinforcement via multiscale, multilevel architecture. In the method, polymeric membranes with various pore sizes (50-800 nm) and shapes (dots, lines) are fabricated by a hierarchical mould-based dewetting of ultraviolet-curable resins. In particular, the nano-pores are monolithically integrated on a two-level hierarchical supporting layer, allowing for the rapid (<5 min) and robust formation of multiscale and multilevel nano-apertures over large areas (2 × 2 cm(2)).
Journal of Nanobiotechnology | 2015
Seung Woo Lee; Seon Ah Cheon; Moon Il Kim; Tae Jung Park
Organic–inorganic hybrid nanoflowers, a newly developed class of flower-like hybrid nanoparticles, have received much attention due to their simple synthesis, high efficiency, and enzyme stabilizing ability. This article covers, in detail, the types, structural features, mechanism of formation, and bio-related applications of hybrid nanoflowers. The five major types of hybrid nanoflowers are discussed, i.e., copper–protein, calcium–protein, and manganese–protein hybrid nanoflowers, copper–DNA hybrid nanoflowers, and capsular hybrid nanoflowers. The structural features of these nanoflowers, such as size, shape, and protein ratio generally determine their applications. Thus, the specific characteristics of hybrid nanoflowers are summarized in this review. The interfacial mechanism of nanoflower formation is examined in three steps: first, combination of metal ion and organic matter; second, formation of petals; third, growth of nanoflowers. The explanations provided herein can be utilized in the development of innovative approaches for the synthesis of hybrid nanoflowers for prospective development of a plethora of hybrid nanoflowers. The future prospects of hybrid nanoflowers in the biotechnology industry, medicine, sensing, and catalysis are also discussed.