Tae Siek Rhee
Korea University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tae Siek Rhee.
Journal of Geophysical Research | 2016
In-Tae Kim; Doshik Hahm; Tae Siek Rhee; Tae Wan Kim; Chang-Sin Kim; Sanghoon Lee
The light noble gases, helium (He) and neon (Ne), dissolved in seawater, can be useful tracers of freshwater input from glacial melting because the dissolution of air bubbles trapped in glacial ice results in an approximately tenfold supersaturation. Using He and Ne measurements, we determined, for the first time, the distribution of glacial meltwater (GMW) within the water columns of the Dotson Trough (DT) and in front of the Dotson and Getz Ice Shelves (DIS and GIS, respectively) in the western Amundsen Sea, Antarctica, in the austral summers of 2011 and 2012. The measured saturation anomalies of He and Ne (ΔHe and ΔNe) were in the range of 3–35% and 2–12%, respectively, indicating a significant presence of GMW. Throughout the DT, the highest values of ΔHe (21%) were observed at depths of 400–500 m, corresponding to the layer between the incoming warm Circumpolar Deep Water and the overlying Winter Water. The high ΔHe (and ΔNe) area extended outside of the shelf break, suggesting that GMW is transported more than 300 km offshore. The ΔHe was substantially higher in front of the DIS than the GIS, and the highest ΔHe (31%) was observed in the western part of the DIS, where concentrated outflow from the shelf to the offshore was observed. In 2012, the calculated GMW fraction in seawater based on excess He and Ne decreased by 30–40% compared with that in 2011 in both ice shelves, indicating strong temporal variability in glacial melting.
Geochemistry Geophysics Geosystems | 2015
Doshik Hahm; Edward T. Baker; Tae Siek Rhee; Yong-Jin Won; Joseph A. Resing; John E. Lupton; Won-Kyung Lee; Minjeong Kim; Sung-Hyun Park
The Australian-Antarctic Ridge (AAR) is one of the largest unexplored regions of the global mid-ocean ridge system. Here, we report a multiyear effort to locate and characterize hydrothermal activity on two first-order segments of the AAR: KR1 and KR2. To locate vent sites on each segment, we used profiles collected by Miniature Autonomous Plume Recorders on rock corers during R/V Araon cruises in March and December of 2011. Optical and oxidation-reduction-potential anomalies indicate multiple active sites on both segments. Seven profiles on KR2 found 3 sites, each separated by ∼25 km. Forty profiles on KR1 identified 17 sites, some within a few kilometer of each other. The spatial density of hydrothermal activity along KR1 and KR2 (plume incidence of 0.34) is consistent with the global trend for a spreading rate of ∼70 mm/yr. The densest area of hydrothermal activity, named “Mujin,” occurred along the 20 km-long inflated section near the segment center of KR1. Continuous plume surveys conducted in January–February of 2013 on R/V Araon found CH4/3He (1 − 15 × 106) and CH4/Mn (0.01–0.5) ratios in the plume samples, consistent with a basaltic-hosted system and typical of ridges with intermediate spreading rates. Additionally, some of the plume samples exhibited slightly higher ratios of H2/3He and Fe/Mn than others, suggesting that those plumes are supported by a younger hydrothermal system that may have experienced a recent eruption. The Mujin-field was populated by Kiwa crabs and seven-armed Paulasterias starfish previously recorded on the East Scotia Ridge, raising the possibility of circum-Antarctic biogeographic connections of vent fauna.
Journal of Geophysical Research | 2014
Doshik Hahm; Tae Siek Rhee; Hae-Cheol Kim; Jisoo Park; Young-Nam Kim; Hyoung Chul Shin; Sanghoon Lee
We observed ΔO2/Ar in the surface waters of the Amundsen Sea, Antarctica, during the austral summers in 2011 and 2012 to investigate the variability of net community production (NCP). Corresponding to the typical peak phytoplankton bloom period, the ΔO2/Ar of the Amundsen Sea Polynya (ASP) reached 30% in early January 2011 and had a strong positive correlation with the sea surface temperature (SST) and chlorophyll-a (Chl-a). In contrast, ΔO2/Ar decreased to −10% in the sea ice zone (SIZ), which was likely associated with either net O2 consumption in the unlit area or the entrainment of deep water containing low dissolved oxygen. Near the terminal stage of the phytoplankton bloom in late February 2012, we observed the same contrasting ΔO2/Ar features between the ASP and SIZ. However, the ΔO2/Ar in the ASP was not >10%, which corresponded with the overall reduction in Chl-a, solar radiation, and SST compared with the corresponding values in 2011. The average net community production in the ASP was 119 ± 79 mmol O2 m−2 d−1 in January 2011, and 23 ± 14 mmol O2 m−2 d−1 in February 2012. The strong correlations of NCP with SST and mixed layer depth (MLD) indicate that the ASP phytoplankton bloom is likely initiated by a combination of increased light availability and SST in early summer. Low SST and variable fluorescence to maximum florescence ratio (Fv/Fm) in February indicate that decreased solar radiation and Fe availability are likely responsible for the phytoplankton bloom demise.
Environmental Science & Technology | 2017
Hyunji Kim; Anne L. Soerensen; Jin Hur; Lars-Eric Heimbürger; Doshik Hahm; Tae Siek Rhee; Seam Noh; Seunghee Han
Methylmercury (MeHg) accumulation in marine organisms poses serious ecosystem and human health risk, yet the sources of MeHg in the surface and subsurface ocean remain uncertain. Here, we report the first MeHg mass budgets for the Western Pacific Ocean estimated based on cruise observations. We found the major net source of MeHg in surface water to be vertical diffusion from the subsurface layer (1.8-12 nmol m-2 yr-1). A higher upward diffusion in the North Pacific (12 nmol m-2 yr-1) than in the Equatorial Pacific (1.8-5.7 nmol m-2 yr-1) caused elevated surface MeHg concentrations observed in the North Pacific. We furthermore found that the slope of the linear regression line for MeHg versus apparent oxygen utilization in the Equatorial Pacific was about 2-fold higher than that in the North Pacific. We suggest this could be explained by redistribution of surface water in the tropical convergence-divergence zone, supporting active organic carbon decomposition in the Equatorial Pacific Ocean. On the basis of this study, we predict oceanic regions with high organic carbon remineralization to have enhanced MeHg concentrations in both surface and subsurface waters.
The ISME Journal | 2016
John R. Dolan; Eun Jin Yang; Sung-Ho Kang; Tae Siek Rhee
The latitudinal diversity gradient is a well-known biogeographic pattern. However, rarely considered is how a cline in species richness may be reflected in the characteristics of species assemblages. Fewer species may equal fewer distinct ecological types, or declines in redundancy (species functionally similar to one another) or fewer trace species, those occurring in very low concentrations. We focused on tintinnid ciliates of the microzooplankton in which the ciliate cell is housed inside a species-specific lorica or shell. The size of lorica oral aperture, the lorica oral diameter (LOD), is correlated with a preferred prey size and maximum growth rate. Consequently, species of a distinct LOD are distinct in key ecologic characteristics, whereas those of a similar LOD are functionally similar or redundant species. We sampled from East Sea/Sea of Japan to the High Arctic Sea. We determined abundance distributions of biological species and also ecological types by grouping species in LOD size-classes, sets of ecologically similar species. In lower latitudes there are more trace species, more size-classes and the dominant species are accompanied by many apparently ecologically similar species, presumably able to replace the dominant species, at least with regard to the size of prey exploited. Such redundancy appears to decline markedly with latitude in assemblages of tintinnid ciliates. Furthermore, the relatively small species pools of the northern high latitude assemblages suggest a low capacity to adapt to changing conditions.
Ocean Science Journal | 2014
Young Shin Kwon; Tae Siek Rhee; Sun Young Kim; Mi Seon Kim; Man Sik Choi; Eun Jin Yang; Young-Nam Kim
We performed laboratory experiments to investigate the response of Fragilariopsis kerguelensis, a predominant diatom species in the Southern Ocean, to different concentrations of dissolved iron in the culture medium to assess changes in nutrients, trace metals, and greenhouse gases-CO2, CH4, and N2O-during growth. F. kerguelensis was cultured in standard f/2+Si media contained in closed chambers at 2℃, which is a typical surface temperature of the Southern Ocean in summer, under continuous irradiation with ~44 μmol photons m-2 s-1 for 8 days. The media contained 2.2 nM, 7.0 nM, and 10.6 nM of dissolved iron at inoculation. F. kerguelensis grew faster if the initial dissolved iron concentration was higher. Its production rate was ~40 cells mL-1 d-1 with an increase of 10–18 molar dissolved iron on a single cell basis. Fe and Mo were consumed faster than the growth rate at higher dissolved iron concentrations while Mn and Zn were consumed more slowly taking the mean values into account. Nitrate consumption by single cells increased with an increase of dissolved iron in the media, but phosphate and silicate showed a tendency to decrease. Hence, dissolved iron enhanced uptake of nitrate, but not the other nutrients, on a single cell basis. The carbon uptake per cell decreased with an increase in dissolved iron, which is opposite to the growth rate, suggesting that carbon content in single cells could not keep up with the cell growth. The iron efficacy of carbon uptake by single cells, defined as the ratio of the carbon uptake to the iron uptake, also showed a significant reduction with an increase in dissolved iron. This implies the inefficient usage of iron to absorb carbon at a high dissolved iron concentration. CH4 uptake by F. kerguelensis occurred in our experiments, but it was trivial in relation to the overall impact. N2O was consumed at a lower concentration of dissolved iron, but was emitted at a higher dissolved iron concentration, suggesting a facultative response of F. kerguelensis to the available dissolved iron.
Polar Biology | 2015
Bo Kyung Kim; HuiTae Joo; Ho Jung Song; Eun Jin Yang; Sanghoon Lee; Doshik Hahm; Tae Siek Rhee; Sang Heon Lee
Deep Sea Research Part I: Oceanographic Research Papers | 2016
Hyunji Kim; Tae Siek Rhee; Doshik Hahm; Chung Yeon Hwang; Jisook Yang; Seunghee Han
Geochemistry Geophysics Geosystems | 2015
Doshik Hahm; Edward T. Baker; Tae Siek Rhee; Yong-Jin Won; Joseph A. Resing; John E. Lupton; Won-Kyung Lee; Minjeong Kim; Sung-Hyun Park
symposium on experimental and efficient algorithms | 2014
Mi Seon Kim; Man Sik Choi; Sang Heon Lee; Sanghoon Lee; Tae Siek Rhee; Doshik Hahm