Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tae Wu Kim is active.

Publication


Featured researches published by Tae Wu Kim.


Journal of the American Chemical Society | 2012

Protein Structural Dynamics of Photoactive Yellow Protein in Solution Revealed by Pump–Probe X-ray Solution Scattering

Tae Wu Kim; Jae Hyuk Lee; Jungkweon Choi; Kyung Hwan Kim; Luuk J. G. W. van Wilderen; Laurent Guérin; Young-Min Kim; Yang Ouk Jung; Cheolhee Yang; Jeongho Kim; Michael Wulff; Jasper J. van Thor; Hyotcherl Ihee

Photoreceptor proteins play crucial roles in receiving light stimuli that give rise to the responses required for biological function. However, structural characterization of conformational transition of the photoreceptors has been elusive in their native aqueous environment, even for a prototype photoreceptor, photoactive yellow protein (PYP). We employ pump-probe X-ray solution scattering to probe the structural changes that occur during the photocycle of PYP in a wide time range from 3.16 μs to 300 ms. By the analysis of both kinetics and structures of the intermediates, the structural progression of the protein in the solution phase is vividly visualized. We identify four structurally distinct intermediates and their associated five time constants and reconstructed the molecular shapes of the four intermediates from time-independent, species-associated difference scattering curves. The reconstructed structures of the intermediates show the large conformational changes such as the protrusion of N-terminus, which is restricted in the crystalline phase due to the crystal contact and thus could not be clearly observed by X-ray crystallography. The protrusion of the N-terminus and the protein volume gradually increase with the progress of the photocycle and becomes maximal in the final intermediate, which is proposed to be the signaling state. The data not only reveal that a common kinetic mechanism is applicable to both the crystalline and the solution phases, but also provide direct evidence for how the sample environment influences structural dynamics and the reaction rates of the PYP photocycle.


Journal of the American Chemical Society | 2012

Direct observation of cooperative protein structural dynamics of homodimeric hemoglobin from 100 ps to 10 ms with pump-probe X-ray solution scattering.

Kyung Hwan Kim; Srinivasan Muniyappan; Key Young Oang; Jong Goo Kim; Shunsuke Nozawa; Tokushi Sato; Shin-ya Koshihara; Robert H. Henning; Irina Kosheleva; Hosung Ki; Young-Min Kim; Tae Wu Kim; Jeongho Kim; Shin-ichi Adachi; Hyotcherl Ihee

Proteins serve as molecular machines in performing their biological functions, but the detailed structural transitions are difficult to observe in their native aqueous environments in real time. For example, despite extensive studies, the solution-phase structures of the intermediates along the allosteric pathways for the transitions between the relaxed (R) and tense (T) forms have been elusive. In this work, we employed picosecond X-ray solution scattering and novel structural analysis to track the details of the structural dynamics of wild-type homodimeric hemoglobin (HbI) from the clam Scapharca inaequivalvis and its F97Y mutant over a wide time range from 100 ps to 56.2 ms. From kinetic analysis of the measured time-resolved X-ray solution scattering data, we identified three structurally distinct intermediates (I1, I2, and I3) and their kinetic pathways common for both the wild type and the mutant. The data revealed that the singly liganded and unliganded forms of each intermediate share the same structure, providing direct evidence that the ligand photolysis of only a single subunit induces the same structural change as the complete photolysis of both subunits does. In addition, by applying novel structural analysis to the scattering data, we elucidated the detailed structural changes in the protein, including changes in the heme–heme distance, the quaternary rotation angle of subunits, and interfacial water gain/loss. The earliest, R-like I1 intermediate is generated within 100 ps and transforms to the R-like I2 intermediate with a time constant of 3.2 ± 0.2 ns. Subsequently, the late, T-like I3 intermediate is formed via subunit rotation, a decrease in the heme–heme distance, and substantial gain of interfacial water and exhibits ligation-dependent formation kinetics with time constants of 730 ± 120 ns for the fully photolyzed form and 5.6 ± 0.8 μs for the partially photolyzed form. For the mutant, the overall kinetics are accelerated, and the formation of the T-like I3 intermediate involves interfacial water loss (instead of water entry) and lacks the contraction of the heme–heme distance, thus underscoring the dramatic effect of the F97Y mutation. The ability to keep track of the detailed movements of the protein in aqueous solution in real time provides new insights into the protein structural dynamics.


Journal of Physical Chemistry Letters | 2014

Conformational Substates of Myoglobin Intermediate Resolved by Picosecond X-ray Solution Scattering

Key Young Oang; Jong Goo Kim; Cheolhee Yang; Tae Wu Kim; Young-Min Kim; Kyung Hwan Kim; Jeongho Kim; Hyotcherl Ihee

Conformational substates of proteins are generally considered to play important roles in regulating protein functions, but an understanding of how they influence the structural dynamics and functions of the proteins has been elusive. Here, we investigate the structural dynamics of sperm whale myoglobin associated with the conformational substates using picosecond X-ray solution scattering. By applying kinetic analysis considering all of the plausible candidate models, we establish a kinetic model for the entire cycle of the protein transition in a wide time range from 100 ps to 10 ms. Four structurally distinct intermediates are formed during the cycle, and most importantly, the transition from the first intermediate to the second one (B → C) occurs biphasically. We attribute the biphasic kinetics to the involvement of two conformational substates of the first intermediate, which are generated by the interplay between the distal histidine and the photodissociated CO.


Journal of Physical Chemistry A | 2012

Structural Dynamics of 1,2-Diiodoethane in Cyclohexane Probed by Picosecond X-ray Liquidography

Jeongho Kim; Jae Hyuk Lee; Joonghan Kim; Sunhong Jun; Kyung Hwan Kim; Tae Wu Kim; Michael Wulff; Hyotcherl Ihee

We investigate the structural dynamics of iodine elimination reaction of 1,2-diiodoethane (C(2)H(4)I(2)) in cyclohexane by applying time-resolved X-ray liquidography (TRXL). The TRXL technique combines structural sensitivity of X-ray diffraction and 100 ps time resolution of X-ray pulses from synchrotron and allows direct probing of transient structure of reacting molecules. From the analysis of time-dependent X-ray solution scattering patterns using global fitting based on DFT calculation and MD simulation, we elucidate the kinetics and structure of transient intermediates resulting from photodissociation of C(2)H(4)I(2). In particular, the effect of solvent on the reaction kinetics and pathways is examined by comparison with an earlier TRXL study on the same reaction in methanol. In cyclohexane, the C(2)H(4)I radical intermediate undergoes two branched reaction pathways, formation of C(2)H(4)I-I isomer and direct dissociation into C(2)H(4) and I, while only isomer formation occurs in methanol. Also, the C(2)H(4)I-I isomer has a shorter lifetime in cyclohexane by an order of magnitude than in methanol. The difference in the reaction dynamics in the two solvents is accounted for by the difference in solvent polarity. In addition, we determine that the C(2)H(4)I radical has a bridged structure, not a classical structure, in cyclohexane.


Accounts of Chemical Research | 2015

Protein Structural Dynamics Revealed by Time-resolved X-ray Solution Scattering

Jong Goo Kim; Tae Wu Kim; Jeongho Kim; Hyotcherl Ihee

One of the most important questions in biological science is how a protein functions. When a protein performs its function, it undergoes regulated structural transitions. In this regard, to better understand the underlying principle of a protein function, it is desirable to monitor the dynamic evolution of the protein structure in real time. To probe fast and subtle motions of a protein in physiological conditions demands an experimental tool that is not only equipped with superb spatiotemporal resolution but also applicable to samples in solution phase. Time-resolved X-ray solution scattering (TRXSS), discussed in this Account, fits all of those requirements needed for probing the movements of proteins in aqueous solution. The technique utilizes a pump-probe scheme employing an optical pump pulse to initiate photoreactions of proteins and an X-ray probe pulse to monitor ensuing structural changes. The technical advances in ultrafast lasers and X-ray sources allow us to achieve superb temporal resolution down to femtoseconds. Because X-rays scatter off all atomic pairs in a protein, an X-ray scattering pattern provides information on the global structure of the protein with subangstrom spatial resolution. Importantly, TRXSS is readily applicable to aqueous solution samples of proteins with the aid of theoretical models and therefore is well suited for investigating structural dynamics of protein transitions in physiological conditions. In this Account, we demonstrate that TRXSS can be used to probe real-time structural dynamics of proteins in solution ranging from subtle helix movement to global conformational change. Specifically, we discuss the photoreactions of photoactive yellow protein (PYP) and homodimeric hemoglobin (HbI). For PYP, we revealed the kinetics of structural transitions among four transient intermediates comprising a photocycle and, by applying structural analysis based on ab initio shape reconstruction, showed that the signaling of PYP involves the protrusion of the N-terminus with significant increase of the overall protein size. For HbI, we elucidated the dynamics of complex allosteric transitions among transient intermediates. In particular, by applying structural refinement analysis based on rigid-body modeling, we found that the allosteric transition of HbI accompanies the rotation of quaternary structure and the contraction between two heme domains. By making use of the experimental and analysis methods presented in this Account, we envision that the TRXSS can be used to probe the structural dynamics of various proteins, allowing us to decipher the working mechanisms of their functions. Furthermore, when combined with femtosecond X-ray pulses generated from X-ray free electron lasers, TRXSS will gain access to ultrafast protein dynamics on sub-picosecond time scales.


Structural Dynamics | 2016

Cooperative protein structural dynamics of homodimeric hemoglobin linked to water cluster at subunit interface revealed by time-resolved X-ray solution scattering

Jong Goo Kim; Srinivasan Muniyappan; Key Young Oang; Tae Wu Kim; Cheolhee Yang; Kyung Hwan Kim; Jeongho Kim; Hyotcherl Ihee

Homodimeric hemoglobin (HbI) consisting of two subunits is a good model system for investigating the allosteric structural transition as it exhibits cooperativity in ligand binding. In this work, as an effort to extend our previous study on wild-type and F97Y mutant HbI, we investigate structural dynamics of a mutant HbI in solution to examine the role of well-organized interfacial water cluster, which has been known to mediate intersubunit communication in HbI. In the T72V mutant of HbI, the interfacial water cluster in the T state is perturbed due to the lack of Thr72, resulting in two less interfacial water molecules than in wild-type HbI. By performing picosecond time-resolved X-ray solution scattering experiment and kinetic analysis on the T72V mutant, we identify three structurally distinct intermediates (I1, I2, and I3) and show that the kinetics of the T72V mutant are well described by the same kinetic model used for wild-type and F97Y HbI, which involves biphasic kinetics, geminate recombination, and bimolecular CO recombination. The optimized kinetic model shows that the R-T transition and bimolecular CO recombination are faster in the T72V mutant than in the wild type. From structural analysis using species-associated difference scattering curves for the intermediates, we find that the T-like deoxy I3 intermediate in solution has a different structure from deoxy HbI in crystal. In addition, we extract detailed structural parameters of the intermediates such as E-F distance, intersubunit rotation angle, and heme-heme distance. By comparing the structures of protein intermediates in wild-type HbI and the T72V mutant, we reveal how the perturbation in the interfacial water cluster affects the kinetics and structures of reaction intermediates of HbI.


Journal of Physics B | 2015

Rotational dephasing of a gold complex probed by anisotropic femtosecond x-ray solution scattering using an x-ray free-electron laser

Jong Goo Kim; Kyung Hwan Kim; Key Young Oang; Tae Wu Kim; Hosung Ki; Junbeom Jo; Jeongho Kim; Tokushi Sato; Shunsuke Nozawa; Shin-ichi Adachi; Hyotcherl Ihee

The orientational dynamics of a gold trimer complex in a solution are investigated by using anisotropic femtosecond x-ray solution scattering measured by an x-ray free-electron laser. A linearly polarized laser pulse preferentially excites molecules with transition dipoles oriented parallel to the laser polarization, leading to the transient alignment of excited molecules. Such photoselectively aligned molecules give rise to an anisotropic scattering pattern that has different profiles in parallel and perpendicular directions with respect to laser polarization. Anisotropic x-ray scattering patterns obtained from the transiently aligned molecules contain information on the molecular orientation. By monitoring the time evolution of the anisotropic scattering pattern, we probe the rotational dephasing dynamics of [Au(CN)2 −]3 in a solution. We found that rotational dephasing of [Au(CN)2 −]3 occurs with a time constant of 13 ± 4 ps. By contrast, time-resolved scattering data on FeCl3 in a water solution, which does not accompany any structural change and gives only the contributions of solvent heating, lacks any anisotropy in the scattering signal.


Structural Dynamics | 2016

Femtosecond X-ray solution scattering reveals that bond formation mechanism of a gold trimer complex is independent of excitation wavelength

Kyung Hwan Kim; Jong Goo Kim; Key Young Oang; Tae Wu Kim; Hosung Ki; Junbeom Jo; Jeongho Kim; Tokushi Sato; Shunsuke Nozawa; Shin-ichi Adachi; Hyotcherl Ihee

The [Au(CN)2−]3 trimer in water experiences a strong van der Waals interaction between the d10 gold atoms due to large relativistic effect and can serve as an excellent model system to study the bond formation process in real time. The trimer in the ground state (S0) exists as a bent structure without the covalent bond between the gold atoms, and upon the laser excitation, one electron in the antibonding orbital goes to the bonding orbital, thereby inducing the formation of a covalent bond between gold atoms. This process has been studied by various time-resolved techniques, and most of the interpretation on the structure and dynamics converge except that the structure of the first intermediate (S1) has been debated due to different interpretations between femtosecond optical spectroscopy and femtosecond X-ray solution scattering. Recently, the excitation wavelength of 267 nm employed in our previous scattering experiment was suggested as the culprit for misinterpretation. Here, we revisited this issue by performing femtosecond X-ray solution scattering with 310 nm excitation and compared the results with our previous study employing 267 nm excitation. The data show that a linear S1 structure is formed within 500 fs regardless of excitation wavelength and the structural dynamics observed at both excitation wavelengths are identical to each other within experimental errors.


Physical Chemistry Chemical Physics | 2015

Identifying the major intermediate species by combining time-resolved X-ray solution scattering and X-ray absorption spectroscopy

Kyung Hwan Kim; Jung-Woo Kim; Key Young Oang; Jonghoon Lee; Daniel Grolimund; C. J. Milne; Thomas J. Penfold; S. L. Johnson; Andreas Galler; Tae Wu Kim; Jong Goo Kim; Deokbeom Suh; Jiwon Moon; Kiryong Hong; Laurent Guérin; Tae Kyu Kim; Michael Wulff; Christian Bressler; Hyotcherl Ihee

Identifying the intermediate species along a reaction pathway is a first step towards a complete understanding of the reaction mechanism, but often this task is not trivial. There has been a strong on-going debate: which of the three intermediates, the CHI2 radical, the CHI2-I isomer, and the CHI2(+) ion, is the dominant intermediate species formed in the photolysis of iodoform (CHI3)? Herein, by combining time-resolved X-ray liquidography (TRXL) and time-resolved X-ray absorption spectroscopy (TR-XAS), we present strong evidence that the CHI2 radical is dominantly formed from the photolysis of CHI3 in methanol at 267 nm within the available time resolution of the techniques (∼20 ps for TRXL and ∼100 ps for TR-XAS). The TRXL measurement, conducted using the time-slicing scheme, detected no CHI2-I isomer within our signal-to-noise ratio, indicating that, if formed, the CHI2-I isomer must be a minor intermediate. The TR-XAS transient spectra measured at the iodine L1 and L3 edges support the same conclusion. The present work demonstrates that the application of these two complementary time-resolved X-ray methods to the same system can provide a detailed understanding of the reaction mechanism.


Nature | 2015

Direct observation of bond formation in solution with femtosecond X-ray scattering.

Kyung Hwan Kim; Jong Goo Kim; Shunsuke Nozawa; Tokushi Sato; Key Young Oang; Tae Wu Kim; Hosung Ki; Junbeom Jo; Sungjun Park; Changyong Song; Takahiro Sato; Kanade Ogawa; Tadashi Togashi; Kensuke Tono; Makina Yabashi; Tetsuya Ishikawa; Joonghan Kim; Ryong Ryoo; Jeongho Kim; Hyotcherl Ihee; Shin-ichi Adachi

Collaboration


Dive into the Tae Wu Kim's collaboration.

Researchain Logo
Decentralizing Knowledge