Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taegwon Oh is active.

Publication


Featured researches published by Taegwon Oh.


Nature Medicine | 2013

Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis

Kevin Pethe; Pablo Bifani; Jichan Jang; Sunhee Kang; Seijin Park; Sujin Ahn; Jan Jiricek; Juyoung Jung; Hee Kyoung Jeon; Jonathan Cechetto; Thierry Christophe; Honggun Lee; Marie Kempf; Mary Jackson; Anne J. Lenaerts; Hang Ohuong Pham; Victoria Jones; Min Jung Seo; Young Mi Kim; Mooyoung Seo; Jeong Jea Seo; Dongsik Park; Yoonae Ko; Inhee Choi; Ryangyeo Kim; Se Yeon Kim; Seungbin Lim; Seung-Ae Yim; Jiyoun Nam; Hwankyu Kang

New therapeutic strategies are needed to combat the tuberculosis pandemic and the spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) forms of the disease, which remain a serious public health challenge worldwide. The most urgent clinical need is to discover potent agents capable of reducing the duration of MDR and XDR tuberculosis therapy with a success rate comparable to that of current therapies for drug-susceptible tuberculosis. The last decade has seen the discovery of new agent classes for the management of tuberculosis, several of which are currently in clinical trials. However, given the high attrition rate of drug candidates during clinical development and the emergence of drug resistance, the discovery of additional clinical candidates is clearly needed. Here, we report on a promising class of imidazopyridine amide (IPA) compounds that block Mycobacterium tuberculosis growth by targeting the respiratory cytochrome bc1 complex. The optimized IPA compound Q203 inhibited the growth of MDR and XDR M. tuberculosis clinical isolates in culture broth medium in the low nanomolar range and was efficacious in a mouse model of tuberculosis at a dose less than 1 mg per kg body weight, which highlights the potency of this compound. In addition, Q203 displays pharmacokinetic and safety profiles compatible with once-daily dosing. Together, our data indicate that Q203 is a promising new clinical candidate for the treatment of tuberculosis.


American Journal of Respiratory and Critical Care Medicine | 2012

Macrolide Treatment for Mycobacterium abscessus and Mycobacterium massiliense Infection and Inducible Resistance

Go-Eun Choi; Sung Jae Shin; C.W. Won; Ki-Nam Min; Taegwon Oh; Mi-Young Hahn; Keehoon Lee; Soo Hyun Lee; Charles L. Daley; Seonwoo Kim; Byeong-Ho Jeong; Kyeongman Jeon; Won-Jung Koh

RATIONALE Macrolides, such as clarithromycin (CLR) and azithromycin (AZM), are frequently the only oral antibiotics that are active against Mycobacterium abscessus and M. massiliense infections. OBJECTIVES To compare the activity of CLR and AZM in experimental models. METHODS We compared the treatment efficacies of CLR and AZM and determined the correlation between efficacy and induced erythromycin ribosome methyltransferase gene (erm)(41) expression in experimental models of M. abscessus and M. massiliense infections. MEASUREMENTS AND MAIN RESULTS In all tested M. abscessus isolates, a high level of inducible CLR resistance developed (minimal inhibitory concentration [MIC] on Day 3 versus Day 14; P < 0.001). Whereas the AZM MIC increased on Day 14 (P < 0.01 versus Day 3), the level was significantly lower than the CLR MIC on Day 14 (P < 0.001). However, the MICs of CLR and AZM for the M. massiliense isolates did not change. Compared with CLR, AZM presented greater antibiotic activity against M. abscessus in vitro, ex vivo, and in vivo (P < 0.05), whereas both macrolides were comparably effective against M. massiliense. In M. abscessus infection, the level of erm(41) expression was higher after exposure to CLR than after exposure to AZM (P < 0.001). Experiments using an erm(41)-knockout M. abscessus mutant and an M. massiliense transformant expressing M. abscessus erm(41) confirmed that erm(41) was responsible for inducible CLR resistance. CONCLUSIONS CLR induces greater erm(41) expression and thus higher macrolide resistance than AZM in M. abscessus infection. AZM may be more effective against M. abscessus, whereas both macrolides appear to be equally effective against M. massiliense.


Journal of Clinical Microbiology | 2010

Polymorphisms Associated with Resistance and Cross-Resistance to Aminoglycosides and Capreomycin in Mycobacterium tuberculosis Isolates from South Korean Patients with Drug-Resistant Tuberculosis

Laura E. Via; Sang-Nae Cho; Soohee Hwang; Hyeeun Bang; Seung Kyu Park; Hyung Seok Kang; Doosoo Jeon; Seon Yeong Min; Taegwon Oh; Yeun Kim; Young Mi Kim; Vignesh Rajan; Sharon Y. Wong; Isdore Chola Shamputa; Matthew W. Carroll; Lisa C. Goldfeder; Song A. Lee; Steven M. Holland; Seok-Yong Eum; Hyeyoung Lee; Clifton E. Barry

ABSTRACT The aminoglycosides streptomycin, amikacin, and kanamycin and the cyclic polypeptide capreomycin are all widely used in second-line therapy for patients who develop multidrug-resistant tuberculosis. We have characterized a set of 106 clinical isolates of Mycobacterium tuberculosis using phenotypic drug susceptibility testing (DST) to determine the extent of resistance to each agent and cross-resistance between agents. These results were compared with polymorphisms in the DNA sequences of ribosome-associated genes previously implicated in resistance and with the clinical outcomes of subjects from whom these isolates were obtained. Thirty-six (34%) of these isolates displayed resistance to one or more of these agents, and the majority of these (20 of 36) showed cross-resistance to one or more agents. Most (33 of 36) of the resistant isolates showed polymorphisms in the 16S ribosome components RpsL and rrs. Three resistant strains (3 of 36) were identified that had no known polymorphisms in ribosomal constituents. For kanamycin and streptomycin, molecular DST significantly outperformed phenotypic DST using the absolute concentration method for predicting 4-month sputum conversion (likelihood ratios of 4.0 and 2.0, respectively) and was equivalent to phenotypic DST using the National Committee for Clinical Laboratory Standards (NCCLS)-approved agar proportion method for estimating MIC (likelihood ratio, 4.0). These results offer insight into mechanisms of resistance and cross-resistance among these agents and suggest that the development of rapid molecular tests to distinguish polymorphisms would significantly enhance clinical utility of this important class of second-line antituberculosis drugs.


Journal of Natural Products | 2013

Design, synthesis, and structure-activity relationship studies of tryptanthrins as antitubercular agents.

Jae Min Hwang; Taegwon Oh; Takushi Kaneko; Anna M. Upton; Scott G. Franzblau; Zhenkun Ma; Sang-Nae Cho; Pilho Kim

The natural product tryptanthrin (1a) represents a potential lead for new tuberculosis (TB) drugs since tryptanthrin and its synthetic analogues possess potent in vitro activity against Mycobacterium tuberculosis (Mtb). However, in spite of their in vitro activity, none of these agents have been shown to be efficacious in vivo against animal models of TB. Described herein are syntheses of new tryptanthrin analogues together with a systematic investigation of their in vitro antitubercular activity and ADME properties followed by pharmacokinetic characterization in rodents for the most promising compounds. Those with the best potency and oral bioavailability were progressed to evaluations of efficacy against acute murine TB. The work aimed to prove the concept that this compound class can limit growth of Mtb during infection as well as to establish the SAR for in vitro activity against Mtb and the range of in vitro ADME parameters for this class of natural products. Novel C-11-deoxy (5b) and A-ring-saturated (6) tryptanthrin analogues were discovered that maintained activity against Mtb and showed improved solubility compared to tryptanthrin as well as evidence of oral bioavailability in rodents. However, neither 5b nor 6 demonstrated efficacy against acute murine TB following administration at doses up to 400 mg/kg daily for 4 weeks. Although 5b and 6 failed to inhibit replication or kill Mtb in vivo, they illuminate a path to new structural variations of the tryptanthrin scaffold that may maximize the potential of this class of compounds against TB.


Antimicrobial Agents and Chemotherapy | 2013

Efficacy and Safety of Metronidazole for Pulmonary Multidrug-Resistant Tuberculosis

Matthew W. Carroll; Doosoo Jeon; James M. Mountz; Jong Doo Lee; Yeon Joo Jeong; Nadeem Zia; Myungsun Lee; Jong Seok Lee; Laura E. Via; Soyoung Lee; Seok-Yong Eum; Sung-Joong Lee; Lisa C. Goldfeder; Ying Cai; Boyoung Jin; Youngran Kim; Taegwon Oh; Ray Y. Chen; Lori E. Dodd; Wenjuan Gu; Véronique Dartois; Seung-Kyu Park; Cheon Tae Kim; Clifton E. Barry; Sang-Nae Cho

ABSTRACT Pulmonary lesions from active tuberculosis patients are thought to contain persistent, nonreplicating bacilli that arise from hypoxic stress. Metronidazole, approved for anaerobic infections, has antituberculosis activity against anoxic bacilli in vitro and in some animal models and may target persistent, nonreplicating bacilli. In this double-blind, placebo-controlled trial, pulmonary multidrug-resistant tuberculosis subjects were randomly assigned to receive metronidazole (500 mg thrice daily) or placebo for 8 weeks in addition to an individualized background regimen. Outcomes were measured radiologically (change on high-resolution computed tomography [HRCT]), microbiologically (time to sputum smear and culture conversion), and clinically (status 6 months after stopping therapy). Enrollment was stopped early due to excessive peripheral neuropathies in the metronidazole arm. Among 35 randomized subjects, 31 (15 metronidazole, 16 placebo) were included in the modified intent-to-treat analysis. There were no significant differences by arm in improvement of HRCT lesions from baseline to 2 or 6 months. More subjects in the metronidazole arm converted their sputum smear (P = 0.04) and liquid culture (P = 0.04) to negative at 1 month, but these differences were lost by 2 months. Overall, 81% showed clinical success 6 months after stopping therapy, with no differences by arm. However, 8/16 (50%) of subjects in the metronidazole group and 2/17 (12%) of those in the placebo group developed peripheral neuropathy. Subjects who received metronidazole were 4.3-fold (95% confidence interval [CI], 1.1 to 17.1) more likely to develop peripheral neuropathies than subjects who received placebo. Metronidazole may have increased early sputum smear and culture conversion but was too neurotoxic to use over the longer term. Newer nitroimidazoles with both aerobic and anaerobic activity, now in clinical trials, may increase the sterilizing potency of future treatment regimens.


Bioorganic & Medicinal Chemistry Letters | 2012

Design and synthesis of 1H-1,2,3-triazoles derived from econazole as antitubercular agents

Suhyun Kim; Sang-Nae Cho; Taegwon Oh; Pilho Kim

Econazole has been known to be active against Mycobacterium tuberculosis. We have designed and synthesized 1H-1,2,3-triazoles derived from econazole as antitubercular agents. The majority of triazole derivatives have been prepared by microwave-assisted click chemistry. It turned out that all of the prepared triazoles had no antifungal activities. However, most of the hydroxy-triazoles (6a and 10) apparently turned out to have antitubercular activities. Overall, hydroxy-triazoles 10 were more active than their corresponding ether-triazoles 11. While the MIC value of hydroxy-triazole 10d was as good as econazole (16 μg/mL), the MIC value of 10a was two-fold more active than econazole, suggesting that this 1H-1,2,3-triazole scaffold (3) could be further optimized to develop Mtb specific agents.


Bioorganic & Medicinal Chemistry Letters | 2011

Synthesis and antitubercular activity of monocyclic nitroimidazoles: Insights from econazole

Sang-Ho Lee; Suhyun Kim; Min-Han Yun; Yong Sup Lee; Sang-Nae Cho; Taegwon Oh; Pilho Kim

We have designed and synthesized econazole-derived nitroimidazoles to investigate the antitubercular activity of the nitroimidazole compounds. The introduction of a nitro group at the 4-position of the imidazole on econazole abolished the antitubercular activity. However, alcoholic nitroimidazoles 4 and 6 compounds were active against Mycobacterium tuberculosis (Mtb). While the MIC value of econazole was 16 μg/mL, the MIC of 6a and 6f turned out to be 0.5 μg/mL. In particular, the activity of 6f against non-replicating Mtb was as good as PA-824, which is currently in clinical phase II studies as an antitubercular agent. Overall, alcohol compounds 4 and 6 tend to be more active than ether compounds 5 and 7.


Bioorganic & Medicinal Chemistry | 2010

Identification of novel antitubercular compounds through hybrid virtual screening approach

Muhammad Muddassar; Jae Wan Jang; Hong Seung Gon; Yong Seo Cho; Eunice Eunkyung Kim; Kyo Chang Keum; Taegwon Oh; Sang-Nae Cho; Ae Nim Pae

Growing resistance of prevalent antitubercular (antiTB) agents in clinical isolates of Mycobacterium tuberculosis (MTB) provoked an urgent need to discover novel antiTB agents. Enoyl acyl carrier protein (ACP) reductase (InhA) from Mtb is a well known and thoroughly studied as antitubucular therapy target. Here we have reported the discovery of potent antiTB agents through ligand and structure based approaches using computational tools. Initially compounds with more than 0.500 Tanimoto similarity coefficient index using functional class fingerprints (FCFP_4) to the reference chemotype were mined from the chemdiv database. Further, the molecular docking was performed to select the compounds on the basis of their binding energies, binding modes, and tendencies to form reasonable interactions with InhA (PDB ID=2NSD) protein. Eighty compounds were evaluated for antitubercular activity against H37RV M. tuberculosis strain, out of which one compound showed MIC of 5.70 microM and another showed MIC of 13.85 microM. We believe that these two new scaffolds might be the good starting point from hit to lead optimization for new antitubercular agents.


Medical Microbiology and Immunology | 2011

Conversion of Mycobacterium smegmatis to a pathogenic phenotype via passage of epithelial cells during macrophage infection

S.J. Kim; Hosung Sohn; Go-Eun Choi; Sang-Nae Cho; Taegwon Oh; Hwa-Jung Kim; Jake Whang; Jong-Seok Kim; Eui-Hong Byun; Woo Sik Kim; Ki-Nam Min; Jin Man Kim; Sung Jae Shin

Mycobacteria encounter many different cells during infection within their hosts. Although alveolar epithelial cells play an essential role in host defense as the first cells to be challenged upon contact with mycobacteria, they may contribute to the acquisition of mycobacterial virulence by increasing the expression of virulence or adaptation factors prior to being ingested by macrophages on the side of pathogens. From this aspect, the enhanced virulence of nonpathogenic Mycobacterium smegmatis (MSM) passed through human alveolar A549 epithelial cells (A-MSM) was compared to the direct infection of MSM (D-MSM) in THP-1 macrophages and mouse models. The intracellular growth rate and cytotoxicity of A-MSM were significantly increased in THP-1 macrophages. In addition, compared to D-MSM, A-MSM induced relatively greater interleukin (IL)-1β, IL-6, IL-8, IL-12, TNF-α, MIP-1α, and MCP-1 in THP-1 macrophages. As a next step, a more persistent A-MSM infection was observed in a murine infection model with the development of granulomatous inflammation. Finally, 58 genes induced specifically in A-MSM were partially identified by differential expression using a customized amplification library. These gene expressions were simultaneously maintained in THP-1 infection but no changes were observed in D-MSM. Bioinformatic analysis revealed that these genes are involved mainly in bacterial metabolism including energy production and conversion, carbohydrate, amino acid, and lipid transport, and metabolisms. Conclusively, alveolar epithelial cells promoted the conversion of MSM to the virulent phenotype prior to encountering macrophages by activating the genes required for intracellular survival and presenting its pathogenicity.


Xenobiotica | 2009

Tissue-specific changes in mRNA expression of Abc and Slc transporters in murine pulmonary tuberculosis

Sung-Joong Lee; Taegwon Oh; Bo-Young Jeon; Eun-Young Kwak; W.-S Shim; Sang-Nae Cho; D.-D Kim; Suk-Jae Chung; Chang-Koo Shim

A pulmonary tuberculosis mouse model was used to assess the pharmacodynamic and pharmacokinetic characteristics of tuberculosis therapeutics. While membrane transporters play important roles in drug disposition and physiological homeostasis, their expressional changes and contribution have never been analysed in a tuberculosis animal model. The mRNA expression level of 20 Abc family transporters and 32 Slc family transporters in tuberculosis-infected mice were compared with those in naïve uninfected mice using real-time polymerase chain reaction (PCR). Mycobacterium tuberculosis infection induced many dramatic expression changes of families of both Abc transporters and Slc transporters at 4 and 8 weeks, as observed in the livers, kidneys, and intestines of test mice — and in a different mode, in the lungs and spleens as well. These changes were dependent on the tuberculosis progression with the tissue-specific manner, that is, in the lungs, the number of transporters of which the expression level changed due to M. tuberculosis infection had increased, and the magnitude of change also greater at 8 weeks, while in the spleen, the transcription of most transporters except Mrps had not changed or had recovered back to the same level of naïve transcription at 8 weeks. Understanding the expression changes of transporters will assist in setting up rational preclinical dosing plans through the ability to predict the pharmacokinetics of new anti-tuberculosis chemotherapeutics and, furthermore, will assist in the design of safer and more efficient drug regimens.

Collaboration


Dive into the Taegwon Oh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ae Nim Pae

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Deepak Bhattarai

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Gyochang Keum

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Eunice EunKyeong Kim

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jae Wan Jang

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Soon Bang Kang

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Muhammad Muddassar

COMSATS Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Pilho Kim

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Doosoo Jeon

Pusan National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge