Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taejun Wang is active.

Publication


Featured researches published by Taejun Wang.


Chemical Communications | 2012

In vivo two-photon fluorescent imaging of fluoride with a desilylation-based reactive probe

Dokyoung Kim; Subhankar Singha; Taejun Wang; Eunseok Seo; Jun Ho Lee; Sang Joon Lee; Ki Hean Kim; Kyo Han Ahn

A two-photon excitable molecular probe for fluoride, developed based on a fluoride-specific desilylation reaction, is demonstrated to be useful for fluorescent imaging of fluoride ions in live zebrafish by one-photon as well as two-photon microscopy for the first time.


Journal of the American Chemical Society | 2015

Two-Photon Absorbing Dyes with Minimal Autofluorescence in Tissue Imaging: Application to in Vivo Imaging of Amyloid-β Plaques with a Negligible Background Signal

Dokyoung Kim; Hyunsoo Moon; Sung Hoon Baik; Subhankar Singha; Yong Woong Jun; Taejun Wang; Ki Hean Kim; Byung Sun Park; Junyang Jung; Inhee Mook-Jung; Kyo Han Ahn

Fluorescence imaging of tissues offer an essential means for studying biological systems. Autofluorescence becomes a serious issue in tissue imaging under excitation at UV-vis wavelengths where biological molecules compete with the fluorophore. To address this critical issue, a novel class of fluorophores that can be excited at ∼900 nm under two-photon excitation conditions and emits in the red wavelength region (≥600 nm) has been disclosed. The new π-extended dipolar dye system shows several advantageous features including minimal autofluorescence in tissue imaging and pronounced solvent-sensitive emission behavior, compared with a widely used two-photon absorbing dye, acedan. As an important application of the new dye system, one of the dyes was developed into a fluorescent probe for amyloid-β plaques, a key biomarker of Alzheimers disease. The probe enabled in vivo imaging of amyloid-β plaques in a disease-model mouse, with negligible background signal. The new dye system has great potential for the development of other types of two-photon fluorescent probes and tags for imaging of tissues with minimal autofluorescence.


Organic Letters | 2012

Reaction-Based Two-Photon Probes for Mercury Ions: Fluorescence Imaging with Dual Optical Windows

Alla Sreenivasa Rao; Dokyoung Kim; Taejun Wang; Ki Hean Kim; Sekyu Hwang; Kyo Han Ahn

For fluorescent imaging of mercury ions in living species, two-photon probes with dual optical windows are in high demand but remain unexplored. Several dithioacetals were evaluated, and a probe was found, which, upon reaction with mercury species, yielded a two-photon dye; this conversion accompanies ratiometric emission changes with a 97-nm shift, enabling fluorescent imaging of both the probe and mercury ions in cells by one- and two-photon microscopy for the first time.


Analytical Chemistry | 2015

Toward a selective, sensitive, fast-responsive, and biocompatible two-photon probe for hydrogen sulfide in live cells.

Subhankar Singha; Dokyoung Kim; Hyunsoo Moon; Taejun Wang; Ki Hean Kim; Youn Ho Shin; Junyang Jung; Eunseok Seo; Sang Joon Lee; Kyo Han Ahn

Hydrogen sulfide has emerged as an exciting endogenous gasotransmitter in addition to nitric oxide and carbon dioxide. Noninvasive detection methods for hydrogen sulfide thus become indispensable tools for studying its diverse roles in biological systems. Accordingly, fluorescent probes for hydrogen sulfide have received great attention in recent years. A practically useful fluorescent probe for bioimaging of hydrogen sulfide should be selective, sensitive, fast-responsive, biocompatible, observable in the biological optical window, and capable of deep-tissue imaging. These sensing properties, however, are extremely difficult to achieve at the same time. Disclosed here is the two-photon fluorescent probe that meets all of these criteria. The probe belongs to a Michael acceptor system, which raised a serious selectivity issue over the competing biothiols such as cysteine and glutathione. We have addressed the selectivity issue by optimizing the electronic and steric interactions between biothiols and the probe, in addition to achieving very high sensitivity, fast-response, and biocompatibility. Also, the sensing mechanism suggested in the literature was revised. The probe thus enables us to image the endogenously produced hydrogen sulfide with negligible interference from other biothiols in live cells. The excellent sensing properties of the probe combined with its capability of bioimaging thus make it a practically useful tool for further studying biological roles of hydrogen sulfide.


ACS Nano | 2014

Spraying Quantum Dot Conjugates in the Colon of Live Animals Enabled Rapid and Multiplex Cancer Diagnosis Using Endoscopy

Youngrong Park; Yeon-Mi Ryu; Yebin Jung; Taejun Wang; Yeonggyeong Baek; Yeoreum Yoon; Sang Mun Bae; Joonhyuck Park; Sekyu Hwang; Jaeil Kim; Eun-ju Do; Sang-Yeob Kim; Euiheon Chung; Ki Hean Kim; Sungjee Kim; Seung-Jae Myung

The detection of colon cancer using endoscopy is widely used, but the interpretation of the diagnosis is based on the clinicians naked eye. This is subjective and can lead to false detection. Here we developed a rapid and accurate molecular fluorescence imaging technique using antibody-coated quantum dots (Ab-QDs) sprayed and washed simultaneously on colon tumor tissues inside live animals, subsequently excited and imaged by endoscopy. QDs were conjugated to matrix metalloproteinases (MMP) 9, MMP 14, or carcinoembryonic antigen (CEA) Abs with zwitterionic surface coating to reduce nonspecific bindings. The Ab-QD probes can diagnose tumors on sectioned mouse tissues, fresh mouse colons stained ex vivo and also in vivo as well as fresh human colon adenoma tissues in 30 min and can be imaged with a depth of 100 μm. The probes successfully detected not only cancers that are readily discernible by bare eyes but also hyperplasia and adenoma regions. Sum and cross signal operations provided postprocessed images that can show complementary information or regions of high priority. This multiplexed quantum dot, spray-and-wash, and endoscopy approach provides a significant advantage for detecting small or flat tumors that may be missed by conventional endoscopic examinations and bestows a strategy for the improvement of cancer diagnosis.


Optics Express | 2011

Combined two-photon microscopy and optical coherence tomography using individually optimized sources.

Bosu Jeong; Byunghak Lee; Min Seong Jang; Hyoseok Nam; Sang June Yoon; Taejun Wang; Junsang Doh; Bo-Gie Yang; Myoung Ho Jang; Ki Hean Kim

The combination of two-photon microscopy (TPM) and optical coherence tomography (OCT) is useful in conducting in-vivo tissue studies, because they provide complementary information regarding tissues. In the present study, we developed a new combined system using separate light sources and scanners for individually optimal imaging conditions. TPM used a Ti-Sapphire laser and provided molecular and cellular information in microscopic tissue regions. Meanwhile, OCT used a wavelength-swept source centered at 1300 nm and provided structural information in larger tissue regions than TPM. The system was designed to do simultaneous imaging by combining light from both sources. TPM and OCT had the field of view values of 300 μm and 800 μm on one side respectively with a 20x objective. TPM had resolutions of 0.47 μm and 2.5 μm in the lateral and axial directions respectively, and an imaging speed of 40 frames/s. OCT had resolutions of 5 μm and 8 μm in lateral and axial directions respectively, a sensitivity of 97dB, and an imaging speed of 0.8 volumes per second. This combined system was tested with simple microsphere specimens, and was then applied to image small intestine and ear tissues of mouse models ex-vivo. Molecular, cellular, and structural information of the tissues were visualized using the proposed combined system.


Scientific Reports | 2015

Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle

Youngwoo Choi; YongHoon Kwon; Dae-Kyum Kim; Jinseong Jeon; Su Chul Jang; Taejun Wang; Minjee Ban; Min-Hye Kim; Seong Gyu Jeon; Min-Sun Kim; Cheol Soo Choi; Young Koo Jee; Yong Song Gho; Sung Ho Ryu; Yoon-Keun Kim

Gut microbes might influence host metabolic homeostasis and contribute to the pathogenesis of type 2 diabetes (T2D), which is characterized by insulin resistance. Bacteria-derived extracellular vesicles (EVs) have been suggested to be important in the pathogenesis of diseases once believed to be non-infectious. Here, we hypothesize that gut microbe-derived EVs are important in the pathogenesis of T2D. In vivo administration of stool EVs from high fat diet (HFD)-fed mice induced insulin resistance and glucose intolerance compared to regular diet (RD)-fed mice. Metagenomic profiling of stool EVs by 16S ribosomal DNA sequencing revealed an increased amount of EVs derived from Pseudomonas panacis (phylum Proteobacteria) in HFD mice compared to RD mice. Interestingly, P. panacis EVs blocked the insulin signaling pathway in both skeletal muscle and adipose tissue. Moreover, isolated P. panacis EVs induced typical diabetic phenotypes, such as glucose intolerance after glucose administration or systemic insulin injection. Thus, gut microbe-derived EVs might be key players in the development of insulin resistance and impairment of glucose metabolism promoted by HFD.


Biomedical Optics Express | 2015

In vivo wide-field reflectance/fluorescence imaging and polarization-sensitive optical coherence tomography of human oral cavity with a forward-viewing probe.

Yeoreum Yoon; Won Hyuk Jang; Peng Xiao; Bumju Kim; Taejun Wang; Qingyun Li; Ji Youl Lee; Euiheon Chung; Ki Hean Kim

We report multimodal imaging of human oral cavity in vivo based on simultaneous wide-field reflectance/fluorescence imaging and polarization-sensitive optical coherence tomography (PS-OCT) with a forward-viewing imaging probe. Wide-field reflectance/fluorescence imaging and PS-OCT were to provide both morphological and fluorescence information on the surface, and structural and birefringent information below the surface respectively. The forward-viewing probe was designed to access the oral cavity through the mouth with dimensions of approximately 10 mm in diameter and 180 mm in length. The probe had field of view (FOV) of approximately 5.5 mm in diameter, and adjustable depth of field (DOF) from 2 mm to 10 mm by controlling numerical aperture (NA) in the detection path. This adjustable DOF was to accommodate both requirements for image-based guiding with high DOF and high-resolution, high-sensitivity imaging with low DOF. This multimodal imaging system was characterized by using a tissue phantom and a mouse model in vivo, and was applied to human oral cavity. Information of surface morphology and vasculature, and under-surface layered structure and birefringence of the oral cavity tissues was obtained. These results showed feasibility of this multimodal imaging system as a tool for studying oral cavity lesions in clinical applications.


Advanced Healthcare Materials | 2015

Microneedle Biosensor for Real-Time Electrical Detection of Nitric Oxide for In Situ Cancer Diagnosis During Endomicroscopy

Do Hee Keum; Ho Sang Jung; Taejun Wang; Myeong Hwan Shin; Young-Eun Kim; Ki Hean Kim; G-One Ahn; Sei Kwang Hahn

A dual-diagnostic system of endom-icroscope and microneedle sensor is developed to demonstrate high-resolution imaging combined with electrical real-time detection of NO released from cancer tissues. The dual-diagnostic system can be a new platform for facile, precise, rapid, and accurate detection of cancers in various biomedical applications.


Optics Express | 2014

Gradient index lens based combined two-photon microscopy and optical coherence tomography.

Taejun Wang; Qingyun Li; Peng Xiao; Jinhyo Ahn; Young-Eun Kim; Youngrong Park; Minjun Kim; Miyeoun Song; Euiheon Chung; Wan Kyun Chung; G-One Ahn; Sungjee Kim; Pilhan Kim; Seung-Jae Myung; Ki Hean Kim

We report a miniaturized probe-based combined two-photon microscopy (TPM) and optical coherence tomography (OCT) system. This system is to study the colorectal cancer in mouse models by visualizing both cellular and structural information of the colon in 3D with TPM and OCT respectively. The probe consisted of gradient index (GRIN) lenses and a 90° reflecting prism at its distal end for side-viewing, and it was added onto an objective lens-based TPM and OCT system. The probe was 2.2 mm in diameter and 60 mm in length. TPM imaging was performed by raster scanning of the excitation focus at the imaging speed of 15.4 frames/s. OCT imaging was performed by combining the linear sample translation and probe rotation along its axis. This miniaturized probe based dual-modal system was characterized with tissue phantoms containing fluorescent microspheres, and applied to image mouse colonic tissues ex vivo as a demonstration. As OCT and TPM provided structural and cellular information of the tissues respectively, this probe based multi-modal imaging system can be helpful for in vivo studies of preclinical animal models such as mouse colonic tumorigenesis.

Collaboration


Dive into the Taejun Wang's collaboration.

Top Co-Authors

Avatar

Ki Hean Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Euiheon Chung

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kyo Han Ahn

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sungjee Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yeoreum Yoon

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sekyu Hwang

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Won Hyuk Jang

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge