Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taek Soon Lee is active.

Publication


Featured researches published by Taek Soon Lee.


Current Opinion in Biotechnology | 2008

Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels.

Sung Kuk Lee; Howard H. Chou; Timothy S. Ham; Taek Soon Lee; Jay D. Keasling

The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.


Molecular Systems Biology | 2014

Engineering microbial biofuel tolerance and export using efflux pumps.

Mary J. Dunlop; Zain Y Dossani; Heather L. Szmidt; Hou Cheng Chu; Taek Soon Lee; Jay D. Keasling; Masood Z. Hadi; Aindrila Mukhopadhyay

Many compounds being considered as candidates for advanced biofuels are toxic to microorganisms. This introduces an undesirable trade‐off when engineering metabolic pathways for biofuel production because the engineered microbes must balance production against survival. Cellular export systems, such as efflux pumps, provide a direct mechanism for reducing biofuel toxicity. To identify novel biofuel pumps, we used bioinformatics to generate a list of all efflux pumps from sequenced bacterial genomes and prioritized a subset of targets for cloning. The resulting library of 43 pumps was heterologously expressed in Escherichia coli, where we tested it against seven representative biofuels. By using a competitive growth assay, we efficiently distinguished pumps that improved survival. For two of the fuels (n‐butanol and isopentanol), none of the pumps improved tolerance. For all other fuels, we identified pumps that restored growth in the presence of biofuel. We then tested a beneficial pump directly in a production strain and demonstrated that it improved biofuel yields. Our findings introduce new tools for engineering production strains and utilize the increasingly large database of sequenced genomes.


Nature Communications | 2011

Identification and microbial production of a terpene-based advanced biofuel

Pamela Peralta-Yahya; Mario Ouellet; Rossana Chan; Aindrila Mukhopadhyay; Jay D. Keasling; Taek Soon Lee

Rising petroleum costs, trade imbalances and environmental concerns have stimulated efforts to advance the microbial production of fuels from lignocellulosic biomass. Here we identify a novel biosynthetic alternative to D2 diesel fuel, bisabolane, and engineer microbial platforms for the production of its immediate precursor, bisabolene. First, we identify bisabolane as an alternative to D2 diesel by measuring the fuel properties of chemically hydrogenated commercial bisabolene. Then, via a combination of enzyme screening and metabolic engineering, we obtain a more than tenfold increase in bisabolene titers in Escherichia coli to >900 mg l−1. We produce bisabolene in Saccharomyces cerevisiae (>900 mg l−1), a widely used platform for the production of ethanol. Finally, we chemically hydrogenate biosynthetic bisabolene into bisabolane. This work presents a framework for the identification of novel terpene-based advanced biofuels and the rapid engineering of microbial farnesyl diphosphate-overproducing platforms for the production of biofuels.


Trends in Biotechnology | 2008

Biofuel alternatives to ethanol: pumping the microbial well.

Jeffrey L. Fortman; Swapnil R. Chhabra; Aindrila Mukhopadhyay; Howard H. Chou; Taek Soon Lee; Eric J. Steen; Jay D. Keasling

Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has generated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel market, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli.

Gregory Bokinsky; Pamela Peralta-Yahya; Anthe George; Bradley M. Holmes; Eric J. Steen; Jeffrey Dietrich; Taek Soon Lee; Danielle Tullman-Ercek; Christopher A. Voigt; Blake A. Simmons; Jay D. Keasling

One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical fuels. Such an organism would require pathways for hydrocarbon production and the capacity to secrete sufficient enzymes to efficiently hydrolyze cellulose and hemicellulose. To demonstrate how one might engineer and coordinate all of the necessary components for a biomass-degrading, hydrocarbon-producing microorganism, we engineered a microorganism naïve to both processes, Escherichia coli, to grow using both the cellulose and hemicellulose fractions of several types of plant biomass pretreated with ionic liquids. Our engineered strains express cellulase, xylanase, beta-glucosidase, and xylobiosidase enzymes under control of native E. coli promoters selected to optimize growth on model cellulosic and hemicellulosic substrates. Furthermore, our strains grow using either the cellulose or hemicellulose components of ionic liquid-pretreated biomass or on both components when combined as a coculture. Both cellulolytic and hemicellulolytic strains were further engineered with three biofuel synthesis pathways to demonstrate the production of fuel substitutes or precursors suitable for gasoline, diesel, and jet engines directly from ionic liquid-treated switchgrass without externally supplied hydrolase enzymes. This demonstration represents a major advance toward realizing a consolidated bioprocess. With improvements in both biofuel synthesis pathways and biomass digestion capabilities, our approach could provide an economical route to production of advanced biofuels.


Nature Biotechnology | 2013

engineering dynamic pathway regulation using stress-response promoters

Robert H. Dahl; Fuzhong Zhang; Jorge Alonso-Gutierrez; Edward E. K. Baidoo; Tanveer S. Batth; Alyssa M. Redding-Johanson; Christopher J. Petzold; Aindrila Mukhopadhyay; Taek Soon Lee; Paul D. Adams; Jay D. Keasling

Heterologous pathways used in metabolic engineering may produce intermediates toxic to the cell. Dynamic control of pathway enzymes could prevent the accumulation of these metabolites, but such a strategy requires sensors, which are largely unknown, that can detect and respond to the metabolite. Here we applied whole-genome transcript arrays to identify promoters that respond to the accumulation of toxic intermediates, and then used these promoters to control accumulation of the intermediate and improve the final titers of a desired product. We apply this approach to regulate farnesyl pyrophosphate (FPP) production in the isoprenoid biosynthetic pathway in Escherichia coli. This strategy improved production of amorphadiene, the final product, by twofold over that from inducible or constitutive promoters, eliminated the need for expensive inducers, reduced acetate accumulation and improved growth. We extended this approach to another toxic intermediate to demonstrate the broad utility of identifying novel sensor-regulator systems for dynamic regulation.


Journal of Biological Engineering | 2011

BglBrick vectors and datasheets: A synthetic biology platform for gene expression

Taek Soon Lee; Rachel A. Krupa; Fuzhong Zhang; Meghdad Hajimorad; William J. Holtz; Nilu Prasad; Sung Kuk Lee; Jay D. Keasling

BackgroundAs engineered biological systems become more complex, it is increasingly common to express multiple operons from different plasmids and inducible expression systems within a single host cell. Optimizing such systems often requires screening combinations of origins of replication, expression systems, and antibiotic markers. This procedure is hampered by a lack of quantitative data on how these components behave when more than one origin of replication or expression system are used simultaneously. Additionally, this process can be time consuming as it often requires the creation of new vectors or cloning into existing but disparate vectors.ResultsHere, we report the development and characterization of a library of expression vectors compatible with the BglBrick standard (BBF RFC 21). We have designed and constructed 96 BglBrick-compatible plasmids with a combination of replication origins, antibiotic resistance genes, and inducible promoters. These plasmids were characterized over a range of inducer concentrations, in the presence of non-cognate inducer molecules, and with several growth media, and their characteristics were documented in a standard format datasheet. A three plasmid system was used to investigate the impact of multiple origins of replication on plasmid copy number.ConclusionsThe standardized collection of vectors presented here allows the user to rapidly construct and test the expression of genes with various combinations of promoter strength, inducible expression system, copy number, and antibiotic resistance. The quantitative datasheets created for these vectors will increase the predictability of gene expression, especially when multiple plasmids and inducers are utilized.


Metabolic Engineering | 2013

Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production

Jorge Alonso-Gutierrez; Rossana Chan; Tanveer S. Batth; Paul D. Adams; Jay D. Keasling; Christopher J. Petzold; Taek Soon Lee

Limonene is a valuable monoterpene used in the production of several commodity chemicals and medicinal compounds. Among them, perillyl alcohol (POH) is a promising anti-cancer agent that can be produced by hydroxylation of limonene. We engineered E. coli with a heterologous mevalonate pathway and limonene synthase for production of limonene followed by coupling with a cytochrome P450, which specifically hydroxylates limonene to produce POH. A strain containing all mevalonate pathway genes in a single plasmid produced limonene at titers over 400mg/L from glucose, substantially higher than has been achieved in the past. Incorporation of a cytochrome P450 to hydroxylate limonene yielded approximately 100mg/L of POH. Further metabolic engineering of the pathway and in situ product recovery using anion exchange resins would make this engineered E. coli a potential production platform for any valuable limonene derivative.


Metabolic Engineering | 2011

Targeted proteomics for metabolic pathway optimization: Application to terpene production

Alyssa M. Redding-Johanson; Tanveer S. Batth; Rossana Chan; Rachel A. Krupa; Heather L. Szmidt; Paul D. Adams; Jay D. Keasling; Taek Soon Lee; Aindrila Mukhopadhyay; Christopher J. Petzold

Successful metabolic engineering relies on methodologies that aid assembly and optimization of novel pathways in microbes. Many different factors may contribute to pathway performance, and problems due to mRNA abundance, protein abundance, or enzymatic activity may not be evident by monitoring product titers. To this end, synthetic biologists and metabolic engineers utilize a variety of analytical methods to identify the parts of the pathway that limit production. In this study, targeted proteomics, via selected-reaction monitoring (SRM) mass spectrometry, was used to measure protein levels in Escherichia coli strains engineered to produce the sesquiterpene, amorpha-4,11-diene. From this analysis, two mevalonate pathway proteins, mevalonate kinase (MK) and phosphomevalonate kinase (PMK) from Saccharomyces cerevisiae, were identified as potential bottlenecks. Codon-optimization of the genes encoding MK and PMK and expression from a stronger promoter led to significantly improved MK and PMK protein levels and over three-fold improved final amorpha-4,11-diene titer (>500 mg/L).


Metabolic Engineering | 2011

Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases

Suzanne M. Ma; David E. Garcia; Alyssa M. Redding-Johanson; Gregory D. Friedland; Rossana Chan; Tanveer S. Batth; John Haliburton; Dylan Chivian; Jay D. Keasling; Christopher J. Petzold; Taek Soon Lee; Swapnil R. Chhabra

Expression of foreign pathways often results in suboptimal performance due to unintended factors such as introduction of toxic metabolites, cofactor imbalances or poor expression of pathway components. In this study we report a 120% improvement in the production of the isoprenoid-derived sesquiterpene, amorphadiene, produced by an engineered strain of Escherichia coli developed to express the native seven-gene mevalonate pathway from Saccharomyces cerevisiae (Martin et al. 2003). This substantial improvement was made by varying only a single component of the pathway (HMG-CoA reductase) and subsequent host optimization to improve cofactor availability. We characterized and tested five variant HMG-CoA reductases obtained from publicly available genome databases with differing kinetic properties and cofactor requirements. The results of our in vitro and in vivo analyses of these enzymes implicate substrate inhibition of mevalonate kinase as an important factor in optimization of the engineered mevalonate pathway. Consequently, the NADH-dependent HMG-CoA reductase from Delftia acidovorans, which appeared to have the optimal kinetic parameters to balance HMG-CoA levels below the cellular toxicity threshold of E. coli and those of mevalonate below inhibitory concentrations for mevalonate kinase, was identified as the best producer for amorphadiene (54% improvement over the native pathway enzyme, resulting in 2.5mM or 520 mg/L of amorphadiene after 48 h). We further enhanced performance of the strain bearing the D. acidovorans HMG-CoA reductase by increasing the intracellular levels of its preferred cofactor (NADH) using a NAD(+)-dependent formate dehydrogenase from Candida boidinii, along with formate supplementation. This resulted in an overall improvement of the system by 120% resulting in 3.5mM or 700 mg/L amorphadiene after 48 h of fermentation. This comprehensive study incorporated analysis of several key parameters for metabolic design such as in vitro and in vivo kinetic performance of variant enzymes, intracellular levels of protein expression, in-pathway substrate inhibition and cofactor management to enable the observed improvements. These metrics may be applied to a broad range of heterologous pathways for improving the production of biologically derived compounds.

Collaboration


Dive into the Taek Soon Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward E. K. Baidoo

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Paul D. Adams

University of California

View shared research outputs
Top Co-Authors

Avatar

Jorge Alonso-Gutierrez

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Aindrila Mukhopadhyay

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Blake A. Simmons

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kevin W. George

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aram Kang

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge