Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taeko Kimura is active.

Publication


Featured researches published by Taeko Kimura.


Frontiers in Molecular Neuroscience | 2014

Physiological and pathological phosphorylation of tau by Cdk5

Taeko Kimura; Koichi Ishiguro; Shin-ichi Hisanaga

Hyperphosphorylation of microtubule-associated protein tau is one of the major pathological events in Alzheimer’s disease (AD) and other related neurodegenerative diseases, including frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). Mutations in the tau gene MAPT are a cause of FTDP-17, and the mutated tau proteins are hyperphosphorylated in patient brains. Thus, it is important to determine the molecular mechanism of hyperphosphorylation of tau to understand the pathology of these diseases collectively called tauopathy. Tau is phosphorylated at many sites via several protein kinases, and a characteristic is phosphorylation at Ser/Thr residues in Ser/Thr-Pro sequences, which are targeted by proline-directed protein kinases such as ERK, GSK3β, and Cdk5. Among these kinases, Cdk5 is particularly interesting because it could be abnormally activated in AD. Cdk5 is a member of the cyclin-dependent kinases (Cdks), but in contrast to the major Cdks, which promote cell cycle progression in proliferating cells, Cdk5 is activated in post-mitotic neurons via the neuron-specific activator p35. Cdk5-p35 plays a critical role in brain development and physiological synaptic activity. In contrast, in disease brains, Cdk5 is thought to be hyperactivated by p25, which is the N-terminal truncated form of p35 and is generated by cleavage with calpain. Several reports have indicated that tau is hyperphosphorylated by Cdk5-p25. However, normal and abnormal phosphorylation of tau by Cdk5 is still not completely understood. In this article, we summarize the physiological and pathological phosphorylation of tau via Cdk5.


PLOS ONE | 2014

Phosphorylation of Drebrin by Cyclin-dependent Kinase 5 and Its role in neuronal migration

Kazuya Tanabe; Hiroyuki Yamazaki; Yutaka Inaguma; Akiko Asada; Taeko Kimura; Junya Takahashi; Masato Taoka; Toshio Ohshima; Teiichi Furuichi; Toshiaki Isobe; Koh-ichi Nagata; Tomoaki Shirao; Shin-ichi Hisanaga

Cyclin-dependent kinase 5 (Cdk5)-p35 is a proline-directed Ser/Thr kinase which plays a key role in neuronal migration, neurite outgrowth, and spine formation during brain development. Dynamic remodeling of cytoskeletons is required for all of these processes. Cdk5-p35 phosphorylates many cytoskeletal proteins, but it is not fully understood how Cdk5-p35 regulates cytoskeletal reorganization associated with neuronal migration. Since actin filaments are critical for the neuronal movement and process formation, we aimed to find Cdk5 substrates among actin-binding proteins. In this study, we isolated actin gels from mouse brain extracts, which contain many actin-binding proteins, and phosphorylated them by Cdk5-p35 in vitro. Drebrin, a side binding protein of actin filaments and well known for spine formation, was identified as a phosphorylated protein. Drebrin has two isoforms, an embryonic form drebrin E and an adult type long isoform drebrin A. Ser142 was identified as a common phosphorylation site to drebrin E and A and Ser342 as a drebrin A-specific site. Phosphorylated drebrin is localized at the distal area of total drebrin in the growth cone of cultured primary neurons. By expressing nonphosphorylatable or phosphorylation mimicking mutants in developing neurons in utero, the reversible phosphorylation/dephosphorylation reaction of drebrin was shown to be involved in radial migration of cortical neurons. These results suggest that Cdk5-p35 regulates neuronal migration through phosphorylation of drebrin in growth cone processes.


Journal of Biological Chemistry | 2013

Isomerase Pin1 stimulates dephosphorylation of tau protein at cyclin-dependent kinase (Cdk5)-dependent Alzheimer phosphorylation sites.

Taeko Kimura; Koji Tsutsumi; Masato Taoka; Taro Saito; Masami Masuda-Suzukake; Koichi Ishiguro; Florian Plattner; Takafumi Uchida; Toshiaki Isobe; Masato Hasegawa; Shin-ichi Hisanaga

Background: Hyperphosphorylated Tau is a component of neurofibrillary tangles, the pathological hallmark in brains with tauopathies. Results: Pin1 binds phospho-Tau and stimulates its dephosphorylation at Cdk5-mediated phosphorylation sites. Conclusion: Efficient Tau dephosphorylation at Alzheimer-related sites requires Pin1 activity, thereby preventing Tau hyperphosphorylation. Significance: Disruption of Pin1-dependent facilitation of Tau dephosphorylation may be a critical mechanism underlying the etiology of tauopathies. Neurodegenerative diseases associated with the pathological aggregation of microtubule-associated protein Tau are classified as tauopathies. Alzheimer disease, the most common tauopathy, is characterized by neurofibrillary tangles that are mainly composed of abnormally phosphorylated Tau. Similar hyperphosphorylated Tau lesions are found in patients with frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) that is induced by mutations within the tau gene. To further understand the etiology of tauopathies, it will be important to elucidate the mechanism underlying Tau hyperphosphorylation. Tau phosphorylation occurs mainly at proline-directed Ser/Thr sites, which are targeted by protein kinases such as GSK3β and Cdk5. We reported previously that dephosphorylation of Tau at Cdk5-mediated sites was enhanced by Pin1, a peptidyl-prolyl isomerase that stimulates dephosphorylation at proline-directed sites by protein phosphatase 2A. Pin1 deficiency is suggested to cause Tau hyperphosphorylation in Alzheimer disease. Up to the present, Pin1 binding was only shown for two Tau phosphorylation sites (Thr-212 and Thr-231) despite the presence of many more hyperphosphorylated sites. Here, we analyzed the interaction of Pin1 with Tau phosphorylated by Cdk5-p25 using a GST pulldown assay and Biacore approach. We found that Pin1 binds and stimulates dephosphorylation of Tau at all Cdk5-mediated sites (Ser-202, Thr-205, Ser-235, and Ser-404). Furthermore, FTDP-17 mutant Tau (P301L or R406W) showed slightly weaker Pin1 binding than non-mutated Tau, suggesting that FTDP-17 mutations induce hyperphosphorylation by reducing the interaction between Pin1 and Tau. Together, these results indicate that Pin1 is generally involved in the regulation of Tau hyperphosphorylation and hence the etiology of tauopathies.


Journal of Biological Chemistry | 2009

Effect of Pin1 or Microtubule Binding on Dephosphorylation of FTDP-17 Mutant Tau

Kensuke Yotsumoto; Taro Saito; Akiko Asada; Takayuki Oikawa; Taeko Kimura; Chiyoko Uchida; Koichi Ishiguro; Takafumi Uchida; Masato Hasegawa; Shin-ichi Hisanaga

Neurodegenerative tauopathies, including Alzheimer disease, are characterized by abnormal hyperphosphorylation of the microtubule-associated protein Tau. One group of tauopathies, known as frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), is directly associated with mutations of the gene tau. However, it is unknown why mutant Tau is highly phosphorylated in the patient brain. In contrast to in vivo high phosphorylation, FTDP-17 Tau is phosphorylated less than wild-type Tau in vitro. Because phosphorylation is a balance between kinase and phosphatase activities, we investigated dephosphorylation of mutant Tau proteins, P301L and R406W. Tau phosphorylated by Cdk5-p25 was dephosphorylated by protein phosphatases in rat brain extracts. Compared with wild-type Tau, R406W was dephosphorylated faster and P301L slower. The two-dimensional phosphopeptide map analysis suggested that faster dephosphorylation of R406W was due to a lack of phosphorylation at Ser-404, which is relatively resistant to dephosphorylation. We studied the effect of the peptidyl-prolyl isomerase Pin1 or microtubule binding on dephosphorylation of wild-type Tau, P301L, and R406W in vitro. Pin1 catalyzes the cis/trans isomerization of phospho-Ser/Thr-Pro sequences in a subset of proteins. Dephosphorylation of wild-type Tau was reduced in brain extracts of Pin1-knockout mice, and this reduction was not observed with P301L and R406W. On the other hand, binding to microtubules almost abolished dephosphorylation of wild-type and mutant Tau proteins. These results demonstrate that mutation of Tau and its association with microtubules may change the conformation of Tau, thereby suppressing dephosphorylation and potentially contributing to the etiology of tauopathies.


Journal of Neuroscience Research | 2009

Neuronal expression of two isoforms of mouse Septin 5.

Akiko Asada; Junya Takahashi; Makoto Taniguchi; Hiromi Yamamoto; Taeko Kimura; Taro Saito; Shin-ichi Hisanaga

Septin 5 (Sept5) is a member of the Septin GTPase family and is thought to be involved in exocytosis through interactions with syntaxin 1 in postmitotic neurons. In rats, Sept5 is alternatively spliced to produce a short (Sept5_v2) and long (Sept5_v1) isoform. We recently identified Sept5 in rat brain as a substrate for Cdk5/p35, which phosphorylates Ser17 of Sept5_v1. To date, however, only the short Sept5_v2 isoform has been reported in the mouse. To determine the general expression of the Sept5_v1 isoform in mammals, we isolated Sept5_v1 cDNA by PCR using mouse brain total RNA. Mouse Sept5_v1 cDNA showed a high degree of nucleotide and amino acid sequence homology to the corresponding isoform of rat and human Sept5. Both isoforms were expressed mainly in brain and testis at the mRNA level, but expression was restricted to brain at the protein level. Whereas Sept5_v1 mRNA was highly expressed in the cortex and hippocampus, Sept5_v2 mRNA was expressed at the similar extent across in various brain regions. The protein ratio of Sept5_v1 to Sept5_v2 was high in the hippocampus, roughly equivalent in the cortex and low in the cerebellum and medulla. Sept5_v2 expression increased gradually from E17 to P30, but expression of Sept5_v1 was delayed until P10. The two isoforms were distinguished by their pattern of N‐terminal phosphorylation. Thus, these different expression and phosphorylation patterns suggest isoform‐specific functions for Sept5 and that a phosphorylation‐specific antibody will be useful to study this idea.


American Journal of Pathology | 2016

The Abundance of Nonphosphorylated Tau in Mouse and Human Tauopathy Brains Revealed by the Use of Phos-Tag Method.

Taeko Kimura; Hiroyuki Hatsuta; Masami Masuda-Suzukake; Masato Hosokawa; Koichi Ishiguro; Haruhiko Akiyama; Shigeo Murayama; Masato Hasegawa; Shin-ichi Hisanaga

Tauopathies are neurodegenerative diseases characterized by aggregates of hyperphosphorylated tau. Previous studies have identified many disease-related phosphorylation sites on tau. However, it is not understood how tau is hyperphosphorylated and what extent these sites are phosphorylated in both diseased and normal brains. Most previous studies have used phospho-specific antibodies to analyze tau phosphorylation. These results are useful but do not provide information about nonphosphorylated tau. Here, we applied the method of Phos-tag SDS-PAGE, in which phosphorylated tau was separated from nonphosphorylated tau in vivo. Among heterogeneously phosphorylated tau species in adult mouse brains, the nonphosphorylated 0N4R isoform was detected most abundantly. In contrast, perinatal tau and tau in cold water-stressed mice were all phosphorylated with a similar extent of phosphorylation. In normal elderly human brains, nonphosphorylated 0N3R and 0N4R tau were most abundant. A slightly higher phosphorylation of tau, which may represent the early step of hyperphosphorylation, was increased in Alzheimer disease patients at Braak stage V. Tau with this phosphorylation state was pelleted by centrifugation, and sarkosyl-soluble tau in either Alzheimer disease or corticobasal degeneration brains showed phosphorylation profiles similar to tau in normal human brain, suggesting that hyperphosphorylation occurs in aggregated tau. These results indicate that tau molecules are present in multiple phosphorylation states in vivo, and nonphosphorylated forms are highly expressed among them.


Neuroscience Letters | 2014

Cyclin-dependent kinase 5 phosphorylates and induces the degradation of ataxin-2

Akiko Asada; Rena Yamazaki; Yoshihiro Kino; Taro Saito; Taeko Kimura; Mao Miyake; Masato Hasegawa; Nobuyuki Nukina; Shin-ichi Hisanaga

The expansion of a polyQ repeat within the ataxin-2 protein causes spinocerebellar ataxia type 2 (SCA2). However, neither the precise pathological mechanism nor the physiological functions of ataxin-2 are known. Ataxin-2 contains 47 (S/T)P sequences, which are targeted by proline-directed protein kinases such as the cyclin-dependent kinase 5 (Cdk5). We hypothesized that ataxin-2 is phosphorylated by Cdk5. In fact, phosphorylation of ataxin-2 by Cdk5-p25 was shown using two methods: in vitro(32)P labeling and electrophoretic mobility shift on Phos-tag SDS-PAGE. The fractionation of ataxin-2 into three portions, the N-terminal fragment (NF, amino acids 1-507), the middle fragment (MF, amino acids 508-905), and the C-terminal fragment (CF, amino acids 906-1313) showed that NF and MF were phosphorylated slightly and highly, respectively, by Cdk5-p25 when expressed in COS-7 cells. Cdk5-mediated phosphorylation induced the degradation of NF remarkably and MF moderately. Furthermore, toxic ataxin-2-41Q underwent proteasomal degradation after phosphorylation by Cdk5. These results suggest that Cdk5 controls the abundance of both normal and polyQ-expanded ataxin-2 protein in neurons, which implies that Cdk5 activity is a therapeutic approach for SCA2.


Scientific Reports | 2017

In vivo regulation of glycogen synthase kinase 3β activity in neurons and brains

Ambika Krishnankutty; Taeko Kimura; Taro Saito; Kyota Aoyagi; Akiko Asada; Shinichiro Takahashi; Kanae Ando; Mica Ohara-Imaizumi; Koichi Ishiguro; Shin-ichi Hisanaga

Glycogen synthase kinase 3β (GSK3β) is a multifunctional protein kinase involved in many cellular activities including development, differentiation and diseases. GSK3β is thought to be constitutively activated by autophosphorylation at Tyr216 and inactivated by phosphorylation at Ser9. The GSK3β activity has previously been evaluated by inhibitory Ser9 phosphorylation, but it does not necessarily indicate the kinase activity itself. Here, we applied the Phos-tag SDS-PAGE technique to the analysis of GSK3β phosphoisotypes in cells and brains. There were three phosphoisotypes of GSK3β; double phosphorylation at Ser9 and Tyr216, single phosphorylation at Tyr216 and the nonphosphorylated isotype. Active GSK3β with phosphorylation at Tyr216 represented half or more of the total GSK3β in cultured cells. Although levels of phospho-Ser9 were increased by insulin treatment, Ser9 phosphorylation occurred only in a minor fraction of GSK3β. In mouse brains, GSK3β was principally in the active form with little Ser9 phosphorylation, and the phosphoisotypes of GSK3β changed depending on the regions of the brain, age, sex and disease conditions. These results indicate that the Phos-tag SDS-PAGE method provides a simple and appropriate measurement of active GSK3β in vivo, and the activity is regulated by the mechanism other than phosphorylation on Ser9.


Scientific Reports | 2016

Quantitative and combinatory determination of in situ phosphorylation of tau and its FTDP-17 mutants

Taeko Kimura; Tomohisa Hosokawa; Masato Taoka; Koji Tsutsumi; Kanae Ando; Koichi Ishiguro; Masato Hosokawa; Masato Hasegawa; Shin-ichi Hisanaga

Tau is hyperphosphorylated in the brains of patients with tauopathies, such as Alzheimer’s disease and frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). However, neither the mechanism of hyperphosphorylation nor its contribution to pathogenesis is known. We applied Phos-tag SDS-PAGE, a phosphoaffinity electrophoresis, to the analysis of tau phosphorylation in vitro by Cdk5, in cultured cells and in mouse brain. Here, we found that Cdk5-p25 phosphorylated tau in vitro at Ser404, Ser235, Thr205 and Ser202 in this order. In contrast in cultured cells, Ser404 was preferentially phosphorylated by Cdk5-p35, whereas Thr205 was not phosphorylated. Ser202 and Ser235 were phosphorylated by endogenous kinases. Tau exhibited ~12 phosphorylation isotypes in COS-7 cells with different combinations of phosphorylation at Thr181, Ser202, Thr231, Ser235 and Ser404. These phosphorylation sites were similar to tau phosphorylated in mouse brains. FTDP-17 tau with a mutation in the C-terminal region had different banding patterns, indicating a different phosphorylation pattern. In particular, it was clear that the R406W mutation causes loss of Ser404 phosphorylation. These results demonstrate the usefulness of the Phos-tag technique in the quantitative analysis of site-specific in vivo phosphorylation of tau and provide detailed information on in situ combinatory phosphorylation of tau.


Frontiers in Neuroscience | 2018

Phospho-Tau Bar Code: Analysis of Phosphoisotypes of Tau and Its Application to Tauopathy

Taeko Kimura; Govinda Sharma; Koichi Ishiguro; Shin-ichi Hisanaga

Tau is a microtubule-associated protein which regulates the assembly and stability of microtubules in the axons of neurons. Tau is also a major component of neurofibrillary tangles (NFTs), a pathological hallmark in Alzheimers disease (AD). A characteristic of AD tau is hyperphosphorylation with more than 40 phosphorylation sites. Aggregates of hyperphosphorylated tau are also found in other neurodegenerative diseases which are collectively called tauopathies. Although a large number of studies have been performed on the phosphorylation of AD tau, it is not known if there is disease-specific phosphorylation among tauopathies. This is due to the lack of a proper method for analyzing tau phosphorylation in vivo. Most previous phosphorylation studies were conducted using a range of phosphorylation site-specific antibodies. These studies describe relative changes of different phosphorylation sites, however, it is hard to estimate total, absolute and collective changes in phosphorylation. To overcome these problems, we have recently applied the Phos-Tag technique to the analysis of tau phosphorylation in vitro and in vivo. This method separates tau into many bands during SDS-PAGE depending on its phosphorylation states, creating a bar code appearance. We propose calling this banding pattern of tau the “phospho-tau bar code.” In this review article, we describe what is newly discovered regarding tau phosphorylation through the use of the Phos-Tag. We would like to propose its use for the postmortem diagnosis of tauopathy which is presently done by immunostaining diseased brains with anti-phospho-antibodies. While Phos-tag SDS-PAGE, like other biochemical assays, will lose morphological information, it could provide other types of valuable information such as disease-specific phosphorylation.

Collaboration


Dive into the Taeko Kimura's collaboration.

Top Co-Authors

Avatar

Shin-ichi Hisanaga

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akiko Asada

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Masato Hasegawa

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Taro Saito

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Kanae Ando

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Koji Tsutsumi

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Masato Taoka

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junya Takahashi

Tokyo Metropolitan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge