Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taghrid Istivan is active.

Publication


Featured researches published by Taghrid Istivan.


Applied and Environmental Microbiology | 2007

Detection of Salmonella spp. in Retail Raw Food Samples from Vietnam and Characterization of Their Antibiotic Resistance

Thi Thu Hao Van; George Moutafis; Taghrid Istivan; Linh Thuoc Tran

ABSTRACT A study was conducted to examine the levels of Salmonella spp. contamination in raw food samples, including chicken, beef, pork, and shellfish, from Vietnam and to determine their antibiotic resistance characteristics. A total of 180 samples were collected and examined for the presence of Salmonella spp., yielding 91 Salmonella isolates. Sixty-one percent of meat and 18% of shellfish samples were contaminated with Salmonella spp. Susceptibility of all isolates to a variety of antimicrobial agents was tested, and resistance to tetracycline, ampicillin/amoxicillin, nalidixic acid, sulfafurazole, and streptomycin was found in 40.7%, 22.0%, 18.7%, 16.5%, and 14.3% of the isolates, respectively. Resistance to enrofloxacin, trimethoprim, chloramphenicol, kanamycin, and gentamicin was also detected (8.8 to 2.2%). About half (50.5%) of the isolates were resistant to at least one antibiotic, and multiresistant Salmonella isolates, resistant to at least three different classes of antibiotics, were isolated from all food types. One isolate from chicken (serovar Albany) contained a variant of the Salmonella genomic island 1 antibiotic resistance gene cluster. The results show that antibiotic resistance in Salmonella spp. in raw food samples from Vietnam is significant.


Journal of Medical Microbiology | 2009

Comparison of various antimicrobial agents as catheter lock solutions: preference for ethanol in eradication of coagulase-negative staphylococcal biofilms

Yue Qu; Taghrid Istivan; Andrew J. Daley; Duncan A. Rouch; Margaret A. Deighton

Coagulase-negative staphylococci (CoNS) are the main causative agents of bacteraemia in infants managed in neonatal intensive care units (NICUs). Intraluminal colonization of long-term central venous catheters by these bacteria and subsequent biofilm formation are the prerequisites of the bloodstream infections acquired in NICUs. The catheter lock technique has been used to treat catheter colonization; however, the optimum choice of antimicrobial agents and their corresponding concentrations and exposure times have not been determined. The effectiveness of catheter lock solutions (CLSs) was assessed by determining the minimal biofilm eradication concentration of antimicrobial agents against CoNS biofilms. Five conventional antibiotics (oxacillin, gentamicin, vancomycin, ciprofloxacin and rifampicin) alone or in combination, as well as ethanol, were evaluated. Ethanol was found to be superior to all of these conventional antibiotics when used as a CLS. A time-kill study and confocal laser scanning microscopy revealed that exposure to 40 % ethanol for 1 h was sufficient to kill CoNS biofilm cells. To our knowledge, this is the first in vitro study to provide solid evidence to support the rationale of using ethanol at low concentrations for a short time as a CLS, instead of using conventional antibiotics at high concentrations for a long period to treat catheter-related bloodstream infections.


Annals of Clinical Microbiology and Antimicrobials | 2010

Antibiotic susceptibility of coagulase-negative staphylococci isolated from very low birth weight babies: comprehensive comparisons of bacteria at different stages of biofilm formation.

Yue Qu; Andrew J. Daley; Taghrid Istivan; Suzanne M. Garland; Margaret A. Deighton

BackgroundCoagulase-negative staphylococci are major causes of bloodstream infections in very low birth weight babies cared for in Neonatal Intensive Care Units. The virulence of these bacteria is mainly due to their ability to form biofilms on indwelling medical devices. Biofilm-related infections often fail to respond to antibiotic chemotherapy guided by conventional antibiotic susceptibility tests.MethodsCoagulase-negative staphylococcal blood culture isolates were grown in different phases relevant to biofilm formation: planktonic cells at mid-log phase, planktonic cells at stationary phase, adherent monolayers and mature biofilms and their susceptibilities to conventional antibiotics were assessed. The effects of oxacillin, gentamicin, and vancomycin on preformed biofilms, at the highest achievable serum concentrations were examined. Epifluorescence microscopy and confocal laser scanning microscopy in combination with bacterial viability staining and polysaccharide staining were used to confirm the stimulatory effects of antibiotics on biofilms.ResultsMost coagulase-negative staphylococcal clinical isolates were resistant to penicillin G (100%), gentamicin (83.3%) and oxacillin (91.7%) and susceptible to vancomycin (100%), ciprofloxacin (100%), and rifampicin (79.2%). Bacteria grown as adherent monolayers showed similar susceptibilities to their planktonic counterparts at mid-log phase. Isolates in a biofilm growth mode were more resistant to antibiotics than both planktonic cultures at mid-log phase and adherent monolayers; however they were equally resistant or less resistant than planktonic cells at stationary phase. Moreover, for some cell-wall active antibiotics, concentrations higher than conventional MICs were required to prevent the establishment of planktonic cultures from biofilms. Finally, the biofilm-growth of two S. capitis isolates could be enhanced by oxacillin at the highest achievable serum concentration.ConclusionWe conclude that the resistance of coagulase-negative staphylococci to multiple antibiotics initially remain similar when the bacteria shift from a planktonic growth mode into an early attached mode, then increase significantly as the adherent mode further develops. Furthermore, preformed biofilms of some CoNS are enhanced by oxacillin in a dose-dependent manner.


PLOS ONE | 2011

Biological Effects of a De Novo Designed Myxoma Virus Peptide Analogue: Evaluation of Cytotoxicity on Tumor Cells

Taghrid Istivan; Elena Pirogova; E. Gan; Nahlah M Almansour; Irena Cosic

Background The Resonant Recognition Model (RRM) is a physico-mathematical model that interprets protein sequence linear information using digital signal processing methods. In this study the RRM concept was employed for structure-function analysis of myxoma virus (MV) proteins and the design of a short bioactive therapeutic peptide with MV-like antitumor/cytotoxic activity. Methodology/Principal Findings The analogue RRM-MV was designed by RRM as a linear 18 aa 2.3 kDa peptide. The biological activity of this computationally designed peptide analogue against cancer and normal cell lines was investigated. The cellular cytotoxicity effects were confirmed by confocal immunofluorescence microscopy, by measuring the levels of cytoplasmic lactate dehydrogenase (LDH) and by Prestoblue cell viability assay for up to 72 hours in peptide treated and non-treated cell cultures. Our results revealed that RRM-MV induced a significant dose and time-dependent cytotoxic effect on murine and human cancer cell lines. Yet, when normal murine cell lines were similarly treated with RRM-MV, no cytotoxic effects were observed. Furthermore, the non-bioactive RRM designed peptide RRM-C produced negligible cytotoxic effects on these cancer and normal cell lines when used at similar concentrations. The presence/absence of phosphorylated Akt activity in B16F0 mouse melanoma cells was assessed to indicate the possible apoptosis signalling pathway that could be affected by the peptide treatment. So far, Akt activity did not seem to be significantly affected by RRM-MV as is the case for the original viral protein. Conclusions/Significance Our findings indicate the successful application of the RRM concept to design a bioactive peptide analogue (RRM-MV) with cytotoxic effects on tumor cells only. This 2.345 kDa peptide analogue to a 49 kDa viral protein may be suitable to be developed as a potential cancer therapeutic. These results also open a new direction to the rational design of therapeutic agents for future cancer treatment.


Current Pharmaceutical Biotechnology | 2011

Advances in Methods for Therapeutic Peptide Discovery, Design and Development

Elena Pirogova; Taghrid Istivan; E. Gan; Irena Cosic

Drug discovery and development are intense, lengthy and interdisciplinary processes. Traditionally, drugs were discovered by synthesizing compounds in time-consuming multi-step experimental investigations followed by in vitro and in vivo biological screening. Promising candidates were then further studied for their pharmacokinetic properties, metabolism and potential toxicity. Today, the process of drug discovery has been revolutionized due to the advances in genomics, proteomics, and bioinformatics. Efficient technologies such as combinatorial chemistry, high throughput screening (HTS), virtual screening, de novo design and structure-based drug design contribute greatly to drug discovery. Peptides are emerging as a novel class of drugs for cancer therapy, and many efforts have been made to develop peptide-based pharmacologically active compounds. This paper presents a review of current advances and novel approaches in experimental and computational drug discovery and design. We also present a novel bioactive peptide analogue, designed using the Resonant Recognition Model (RRM), and discuss its potential use for cancer therapeutics.


Fems Immunology and Medical Microbiology | 2008

Characterization of Campylobacter concisus hemolysins

Taghrid Istivan; Stuart C. Smith; Benjamin N. Fry

Campylobacter concisus is an opportunistic pathogen commonly found in the human oral cavity. It has also been isolated from clinical sources including gastroenteritis cases. Both secreted and cell-associated hemolytic activities were detected in C. concisus strains isolated from children with gastroenteritis. The secreted hemolytic activity of C. concisus strains was labile and was detected in variable levels from fresh-culture filtrates only. In addition, another secreted hemolysin/cytotoxin with a molecular weight < 10 kDa was detected in a single C. concisus strain (RCH 12). A C. concisus genomic library, constructed from strain RCH 3 in Escherichia coli XL1-Blue, was screened for hemolytic clones. Subcloning and sequence analysis of selected hemolytic clones identified ORFs for genes that enhance hemolytic activity but do not appear to be related to any known hemolysin genes found in Gram-negative bacteria. In a previous study, a stable cell-associated hemolysin was identified as an outer-membrane phospholipase A (OMPLA) encoded by the pldA gene. In this study, we report cloning of the pldA gene of the clinical strain C. concisus RCH 3 and the complementation of phospholipase A activity in an E. coli pldA mutant.


Journal of Biomedical Science | 2012

A bioactive peptide analogue for myxoma virus protein with a targeted cytotoxicity for human skin cancer in vitro

Nahlah M Almansour; Elena Pirogova; Irena Cosic; Taghrid Istivan

BackgroundCancer is an international health problem, and the search for effective treatments is still in progress. Peptide therapy is focused on the development of short peptides with strong tumoricidal activity and low toxicity. In this study, we investigated the efficacy of a myxoma virus peptide analogue (RRM-MV) as a candidate for skin cancer therapy. RRM-MV was designed using the Resonant Recognition Model (RRM) and its effect was examined on human skin cancer and normal human skin cells in vitro.MethodsCell cultures were treated with various concentrations of the peptides at different incubation intervals. Cellular morphological changes (apoptosis and necrosis) were evaluated using confocal laser scanning microscopy. The cytotoxic effects of RRM-MV on human skin cancer and normal human skin cells were quantitatively determined by cytotoxicity and cell viability assays. The effect on human erythrocytes was also determined using quantitative hemolysis assay. DNA fragmentation assay was performed to detect early apoptotic events in treated cancer cells. Furthermore, to investigate the possible cell signalling pathway targeted by the peptides treatment, the levels of p-Akt expression in skin cancer and normal cells were detected by immunoblotting.ResultsOur results indicate that RRM-MV has a dose-dependent toxic effect on cancer cells only up to 18 h. The immunoblotting results indicated that the RRM-MV slightly increased p-Akt expression in melanoma and carcinoma cells, but did not seem to affect p-Akt expression in normal skin cells.ConclusionsRRM-MV targets and lethally harms cancer cells and leaves normal cells unharmed. It is able to reduce the cancer cell viability, disrupting the LDH activity in cancer cells and can significantly affect cancer progression. Further investigation into other cell signalling pathways is needed in the process leading to the in vivo testing of this peptide to prove its safety as a possible effective treatment for skin cancer.


Future Medicinal Chemistry | 2012

Investigation of cytotoxicity of negative control peptides versus bioactive peptides on skin cancer and normal cells: a comparative study

Nahlah M Almansour; Elena Pirogova; Irena Cosic; Taghrid Istivan

BACKGROUND Resonant recognition model-myxoma virus (RRM-MV), a bioactive peptide analogue for myxoma virus MV-T5 protein, was computationally designed by the RRM. In this study, the anticancer effects of RRM-MV were assessed in vitro against four negative control peptides on human skin cancer and normal cells. RESULTS & DISCUSSION The effects of RRM-MV versus negative control peptides on cells were evaluated by quantitative and qualitative assays. The RRM-MV treatment was able to induce cell death in cancer cells without triggering similar effects on normal cells. However, the negative control peptides produced no toxic effects on skin cancer and normal cells. No effects on human erythrocytes were detected when treated with all peptides. CONCLUSION It is suggested that the RRM can be applied to design therapeutic anticancer peptides.


bioinformatics and bioengineering | 2013

The effects of synthetic Azurocidin peptide analogue on Staphylococcus aureus bacterium

Jie Hu; Pantea Peidaee; Eltaher Elshagmani; Taghrid Istivan; Elena Pirogova

Antibiotics are commonly used as anti-infection drugs. However, the rising of microbial resistance to antibiotics imposes a major challenge to their widespread applications. Hence, there is a growing need to find alternative drugs to eradicate the microbial resistance arising from the excessive use of antibiotics. Antimicrobial peptides (AMPs) are natural defence molecules found in human body. These AMP are present virtually in all life forms where they act as the first line defence agents against invading pathogens. Published studies [1] [2] suggest the possible use of AMPs as alternative anti-infective drugs. In this study we evaluated the anti-microbial activity of a synthetic Azurocidin peptide analogue and compared its efficacy with the native natural antimicrobial peptide Azurocidin. The Resonant Recognition Model (RRM) was employed here to computationally design a short Azurocidin peptide analogue, Azu-RRM. According to the RRM, this de novo designed peptide analogue will mimic and exhibit the activity of the natural Azurocidin (Azu) protein. Within this study the antimicrobial activity of Azu-RRM was investigated on Staphylococcus aureus (ATCC 25923) bacterium. The results obtained reveal that the synthetic peptide analogue affected the growth of this gram positive bacterium. The findings also showed that the Azu-RRM is exhibiting the anti-microbial effects on the growth of the studied bacteria comparable with the suppressing effects induced by the natural Azu protein.


World Congress on Medical Physics and Biomedical Engineering | 2009

Computationally Designed Interleukin-Like Peptide as a Candidate for Cancer Treatment

Elena Pirogova; Taghrid Istivan; E. Gan; Irena Cosic

This study aims to investigate the use of de-novo designed Interleukin-like peptide for its efficacy in cancer treatment. The synthetic peptide was designed using the Resonant Recognition Model (RRM), which postulates that certain features within protein structures are critical for specificity of protein activity. It was shown that interleukin (IL) can significantly affect tumor progression. We designed and synthesized a bioactive peptide that can mimic the therapeutic activity of IL-12 protein. The activity of the de-novo designed peptide was tested on an adherent mouse skin cancer cell line (B16F0). Visible effects of this peptide on cancer cells, including morphological changes and apoptosis, were evaluated using phase contrast and fluorescent microscopy. The results revealed that the IL-12 peptide analogue was toxic to cancer cells as it affected their growth and survival causing apoptosis followed by detachment of the confluent cellular layer.

Collaboration


Dive into the Taghrid Istivan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Daley

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge