Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tahar Ait-Ali is active.

Publication


Featured researches published by Tahar Ait-Ali.


BMC Genomics | 2013

Structural and functional annotation of the porcine immunome

Harry Dawson; Jane Loveland; Géraldine Pascal; James Gilbert; Hirohide Uenishi; Katherine Mann; Yongming Sang; Jie Zhang; Denise R. Carvalho-Silva; Toby Hunt; Matthew Hardy; Zhi-Liang Hu; Shuhong Zhao; Anna Anselmo; Hiroki Shinkai; Celine Chen; Bouabid Badaoui; Daniel Berman; Clara Amid; Mike Kay; David Lloyd; Catherine Snow; Takeya Morozumi; Ryan Pei-Yen Cheng; Megan Bystrom; Ronan Kapetanovic; John C. Schwartz; Ranjit Singh Kataria; Matthew Astley; Eric Fritz

BackgroundThe domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. The completion of the pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human immune systems.ResultsThe Immune Response Annotation Group (IRAG) used computational curation and manual annotation of the swine genome assembly 10.2 (Sscrofa10.2) to refine the currently available automated annotation of 1,369 immunity-related genes through sequence-based comparison to genes in other species. Within these genes, we annotated 3,472 transcripts. Annotation provided evidence for gene expansions in several immune response families, and identified artiodactyl-specific expansions in the cathelicidin and type 1 Interferon families. We found gene duplications for 18 genes, including 13 immune response genes and five non-immune response genes discovered in the annotation process. Manual annotation provided evidence for many new alternative splice variants and 8 gene duplications. Over 1,100 transcripts without porcine sequence evidence were detected using cross-species annotation. We used a functional approach to discover and accurately annotate porcine immune response genes. A co-expression clustering analysis of transcriptomic data from selected experimental infections or immune stimulations of blood, macrophages or lymph nodes identified a large cluster of genes that exhibited a correlated positive response upon infection across multiple pathogens or immune stimuli. Interestingly, this gene cluster (cluster 4) is enriched for known general human immune response genes, yet contains many un-annotated porcine genes. A phylogenetic analysis of the encoded proteins of cluster 4 genes showed that 15% exhibited an accelerated evolution as compared to 4.1% across the entire genome.ConclusionsThis extensive annotation dramatically extends the genome-based knowledge of the molecular genetics and structure of a major portion of the porcine immunome. Our complementary functional approach using co-expression during immune response has provided new putative immune response annotation for over 500 porcine genes. Our phylogenetic analysis of this core immunome cluster confirms rapid evolutionary change in this set of genes, and that, as in other species, such genes are important components of the pig’s adaptation to pathogen challenge over evolutionary time. These comprehensive and integrated analyses increase the value of the porcine genome sequence and provide important tools for global analyses and data-mining of the porcine immune response.


PLOS Pathogens | 2017

Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function

Christine Burkard; Simon G. Lillico; Elizabeth Reid; Ben Jackson; Alan Mileham; Tahar Ait-Ali; C. Bruce A. Whitelaw; Alan Archibald

Porcine Reproductive and Respiratory Syndrome (PRRS) is a panzootic infectious disease of pigs, causing major economic losses to the world-wide pig industry. PRRS manifests differently in pigs of all ages but primarily causes late-term abortions and stillbirths in sows and respiratory disease in piglets. The causative agent of the disease is the positive-strand RNA PRRS virus (PRRSV). PRRSV has a narrow host cell tropism, limited to cells of the monocyte/macrophage lineage. CD163 has been described as a fusion receptor for PRRSV, whereby the scavenger receptor cysteine-rich domain 5 (SRCR5) region was shown to be an interaction site for the virus in vitro. CD163 is expressed at high levels on the surface of macrophages, particularly in the respiratory system. Here we describe the application of CRISPR/Cas9 to pig zygotes, resulting in the generation of pigs with a deletion of Exon 7 of the CD163 gene, encoding SRCR5. Deletion of SRCR5 showed no adverse effects in pigs maintained under standard husbandry conditions with normal growth rates and complete blood counts observed. Pulmonary alveolar macrophages (PAMs) and peripheral blood monocytes (PBMCs) were isolated from the animals and assessed in vitro. Both PAMs and macrophages obtained from PBMCs by CSF1 stimulation (PMMs) show the characteristic differentiation and cell surface marker expression of macrophages of the respective origin. Expression and correct folding of the SRCR5 deletion CD163 on the surface of macrophages and biological activity of the protein as hemoglobin-haptoglobin scavenger was confirmed. Challenge of both PAMs and PMMs with PRRSV genotype 1, subtypes 1, 2, and 3 and PMMs with PRRSV genotype 2 showed complete resistance to viral infections assessed by replication. Confocal microscopy revealed the absence of replication structures in the SRCR5 CD163 deletion macrophages, indicating an inhibition of infection prior to gene expression, i.e. at entry/fusion or unpacking stages.


BMC Genomics | 2009

Comparative genomics of Toll-like receptor signalling in five species

Oliver C. Jann; Annemarie King; Nestor Lopez Corrales; Susan Anderson; Kirsty Jensen; Tahar Ait-Ali; Haizhou Tang; Chunhua Wu; Noelle E. Cockett; Alan Archibald; Elizabeth Glass

BackgroundOver the last decade, several studies have identified quantitative trait loci (QTL) affecting variation of immune related traits in mammals. Recent studies in humans and mice suggest that part of this variation may be caused by polymorphisms in genes involved in Toll-like receptor (TLR) signalling. In this project, we used a comparative approach to investigate the importance of TLR-related genes in comparison with other immunologically relevant genes for resistance traits in five species by associating their genomic location with previously published immune-related QTL regions.ResultsWe report the genomic localisation of TLR1-10 and ten associated signalling molecules in sheep and pig using in-silico and/or radiation hybrid (RH) mapping techniques and compare their positions with their annotated homologues in the human, cattle and mouse whole genome sequences. We also report medium-density RH maps for porcine chromosomes 8 and 13. A comparative analysis of the positions of previously published relevant QTLs allowed the identification of homologous regions that are associated with similar health traits in several species and which contain TLR related and other immunologically relevant genes. Additional evidence was gathered by examining relevant gene expression and association studies.ConclusionThis comparative genomic approach identified eight genes as potentially causative genes for variations of health related traits. These include susceptibility to clinical mastitis in dairy cattle, general disease resistance in sheep, cattle, humans and mice, and tolerance to protozoan infection in cattle and mice. Four TLR-related genes (TLR1, 6, MyD88, IRF3) appear to be the most likely candidate genes underlying QTL regions which control the resistance to the same or similar pathogens in several species. Further studies are required to investigate the potential role of polymorphisms within these genes.


BMC Genomics | 2013

Pig immune response to general stimulus and to porcine reproductive and respiratory syndrome virus infection: a meta-analysis approach

Bouabid Badaoui; Christopher K. Tuggle; Zhi-Liang Hu; James M. Reecy; Tahar Ait-Ali; Anna Anselmo; Sara Botti

BackgroundThe availability of gene expression data that corresponds to pig immune response challenges provides compelling material for the understanding of the host immune system. Meta-analysis offers the opportunity to confirm and expand our knowledge by combining and studying at one time a vast set of independent studies creating large datasets with increased statistical power. In this study, we performed two meta-analyses of porcine transcriptomic data: i) scrutinized the global immune response to different challenges, and ii) determined the specific response to Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection. To gain an in-depth knowledge of the pig response to PRRSV infection, we used an original approach comparing and eliminating the common genes from both meta-analyses in order to identify genes and pathways specifically involved in the PRRSV immune response. The software Pointillist was used to cope with the highly disparate data, circumventing the biases generated by the specific responses linked to single studies. Next, we used the Ingenuity Pathways Analysis (IPA) software to survey the canonical pathways, biological functions and transcription factors found to be significantly involved in the pig immune response. We used 779 chips corresponding to 29 datasets for the pig global immune response and 279 chips obtained from 6 datasets for the pig response to PRRSV infection, respectively.ResultsThe pig global immune response analysis showed interconnected canonical pathways involved in the regulation of translation and mitochondrial energy metabolism. Biological functions revealed in this meta-analysis were centred around translation regulation, which included protein synthesis, RNA-post transcriptional gene expression and cellular growth and proliferation. Furthermore, the oxidative phosphorylation and mitochondria dysfunctions, associated with stress signalling, were highly regulated. Transcription factors such as MYCN, MYC and NFE2L2 were found in this analysis to be potentially involved in the regulation of the immune response.The host specific response to PRRSV infection engendered the activation of well-defined canonical pathways in response to pathogen challenge such as TREM1, toll-like receptor and hyper-cytokinemia/ hyper-chemokinemia signalling. Furthermore, this analysis brought forth the central role of the crosstalk between innate and adaptive immune response and the regulation of anti-inflammatory response. The most significant transcription factor potentially involved in this analysis was HMGB1, which is required for the innate recognition of viral nucleic acids. Other transcription factors like interferon regulatory factors IRF1, IRF3, IRF5 and IRF8 were also involved in the pig specific response to PRRSV infection.ConclusionsThis work reveals key genes, canonical pathways and biological functions involved in the pig global immune response to diverse challenges, including PRRSV infection. The powerful statistical approach led us to consolidate previous findings as well as to gain new insights into the pig immune response either to common stimuli or specifically to PRRSV infection.


Journal of Virological Methods | 2013

A fast and robust method for full genome sequencing of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Type 1 and Type 2

Charlotte Kristiane Hjulsager; Ulrik Fahnøe; Solvej Østergaard Breum; Tahar Ait-Ali; Lars Erik Larsen

PRRSV is a positive-sense RNA virus with a high degree of genetic variability among isolates. For diagnostic sensitivity and vaccine design it is essential to monitor PRRSV genetic diversity. However, to date only a few full genome sequences of PRRSV isolates have been made publicly available. In the present study, fast and robust methods for long range RT-PCR amplification and subsequent next generation sequencing (NGS) were developed and validated on nine Type 1 and nine Type 2 PRRSV viruses. The methods generated robust and reliable sequences both on primary material and cell culture adapted viruses and the protocols performed well on all three NGS platforms tested (Roche 454 FLX, Illumina HiSeq2000, and Ion Torrent PGM™ Sequencer). These methods will greatly facilitate the generation of more full genome PRRSV sequences globally.


Veterinary Immunology and Immunopathology | 2014

Regulation of toll-like receptors 3, 7 and 9 in porcine alveolar macrophages by different genotype 1 strains of porcine reproductive and respiratory syndrome virus.

Liudmila Kuzemtseva; Eugenia de la Torre; Gerard Martín; Ferran Soldevila; Tahar Ait-Ali; Enric Mateu; Laila Darwich

The toll-like receptors (TLRs) play an important role in the innate host defense against pathogens. Endosomal TLRs, TLR3, TLR7/8, and TLR9 are involved in antiviral responses by promoting the production of antiviral cytokines such as type I interferons. Porcine reproductive and respiratory syndrome (PRRS) is an important disease causing economically high losses to the swine industry worldwide and caused by a single stranded positive sense RNA virus, known as PRRS virus (PRRSV). Studies focused on the interaction between PRRSV and TLRs are scarce. The aim of the present study was to evaluate the expression of TLR3, TLR7 and TLR9 in porcine alveolar macrophages (PAM) infected with different genotype 1 PRRSV strains previously sequenced and characterized by their ability to induce TNF-α: 3262 (TNF-α inducer), 3267 (TNF-α not inducer) and an attenuated vaccine strain (strain Deventer, PorcilisPRRS, Merck) that replicates scarcely in PAM. PAM were infected with the different PRRSV strains (at 0.1 multiplicity of infection) for 48 h or mock-stimulated with PAM supernatants. Cells were collected at different time-points (0 h, 6 h, 12 h, 24 h, 36 h, 48 h) to determine the kinetics of viral replication by quantitative RT-PCR (qRT-PCR) and the expression of TLR3, 7 and 9 by qRT-PCR, flow cytometry and indirect immunofluorescence assay. Although infection with PRRSV did not affect significantly relative levels of any TLR mRNA transcript (normalized to β-actin expression), this infection resulted in significant differences in the proportion of cells expressing TLR3. Thus, in PAM infected with PRRSV strain 3262 the proportion of TLR3+ cells significantly increased from 24h compared with the controls; in contrast strain 3267 resulted in a lower proportion of TLR3+ PAM. Interestingly, strain 3262 replicate to lower levels than 3267 at comparable post-inoculation times. For strain DV, the results indicated that this strain did not replicate substantially in PAM and did not stimulated TLR3 expression. These observations suggest that at least TLR3 is regulated differentially by different genotype 1 PRRSV strains and this seems to be related apparently to the replication levels of each strain, as well as, to the TNF-α inducing capability. The fact that mRNA transcripts were kept constant also suggests that this regulation occurs at a post-transcriptional level.


Virus Research | 2012

USP18 restricts PRRSV growth through alteration of nuclear translocation of NF-κB p65 and p50 in MARC-145 cells

Dequan Xu; Simon G. Lillico; Mark W. Barnett; C. B. A. Whitelaw; Alan Archibald; Tahar Ait-Ali

Although the functions of porcine respiratory and reproductive syndrome virus (PRRSV) proteins are increasingly understood, the roles of host factors in modifying infection are less well understood. Growing evidence places deubiquitination at the core of a multitude of regulatory processes, ranging from cell growth to innate immune response and health, such as cancer, degenerative and infectious diseases. This report provides further information on the functional role of the porcine ubiquitin-specific peptidase 18 (USP18) during innate immune responses to PRRSV. We have shown that constitutive overexpression of the porcine USP18 in MARC-145 cells restricts PRRSV growth, at least in part via early activation of NF-κB. Viral growth of PRRSV may be perturbed by increasing and decreasing nuclear translocation of p65 and p50, respectively. Our data highlight USP18 as a host restriction factor during innate immune response to PRRSV.


Gene | 2009

Functional analysis of the porcine USP18 and its role during porcine arterivirus replication.

Tahar Ait-Ali; Alison W Wilson; Heather Finlayson; Wilfrid Carre; Sreenivasa Chakravarthy Ramaiahgari; David G. Westcott; Martin Waterfall; Jean-Pierre Frossard; Kwang-Hyun Baek; Trevor W. Drew; Stephen Bishop; Alan Archibald

Emerging evidence places deubiquitylation at the core of a multitude of regulatory processes, ranging from cell growth to innate immune response and health, such as cancer, degenerative and infectious diseases. Little is known about deubiquitylation in pig and arterivirus infection. This report provides information on the biochemical and functional role of the porcine USP18 during innate immune response to the porcine respiratory and reproductive syndrome virus (PRRSV). We have shown that UBP gene is the ortholog of the murine USP18 (Ubp43) gene and the human ubiquitin specific protease 18 (USP18) gene and encodes a biochemically functional de-ubiquitin enzyme which inhibits signalling pathways that lead to IFN-stimulating response element (ISRE) promotor regulation. Furthermore we have demonstrated that overexpression of the porcine USP18 leads to reduced replication and/or growth of PRRSV. Our data contrast with the conclusion of numerous reports demonstrating that USP18-deficient mice are highly resistant to viral and bacterial infections and to oncogenic transformation by BCR-ABL, and highlight USP18 as a potential target gene that promotes reduced replication of PRRSV.


Virology Journal | 2014

Genomic variation in macrophage-cultured European porcine reproductive and respiratory syndrome virus Olot/91 revealed using ultra-deep next generation sequencing

Zen Huat Lu; Alexander Brown; Alison Wilson; Jay Gregory Calvert; Monica Balasch; Pablo Fuentes-Utrilla; Julia Loecherbach; Frances Turner; Richard Talbot; Alan Archibald; Tahar Ait-Ali

BackgroundPorcine Reproductive and Respiratory Syndrome (PRRS) is a disease of major economic impact worldwide. The etiologic agent of this disease is the PRRS virus (PRRSV). Increasing evidence suggest that microevolution within a coexisting quasispecies population can give rise to high sequence heterogeneity in PRRSV.FindingsWe developed a pipeline based on the ultra-deep next generation sequencing approach to first construct the complete genome of a European PRRSV, strain Olot/9, cultured on macrophages and then capture the rare variants representative of the mixed quasispecies population. Olot/91 differs from the reference Lelystad strain by about 5% and a total of 88 variants, with frequencies as low as 1%, were detected in the mixed population. These variants included 16 non-synonymous variants concentrated in the genes encoding structural and nonstructural proteins; including Glycoprotein 2a and 5.ConclusionUsing an ultra-deep sequencing methodology, the complete genome of Olot/91 was constructed without any prior knowledge of the sequence. Rare variants that constitute minor fractions of the heterogeneous PRRSV population could successfully be detected to allow further exploration of microevolutionary events.


Developments in biologicals | 2008

Dynamic Differential Regulation of Innate Immune Transcripts during the Infection of Alveolar Macrophages by the Porcine Reproductive and Respiratory Syndrome Virus

Tahar Ait-Ali; Alison Wilson; David G. Westcott; Jean-Pierre Frossard; M. Mellencamp; Trevor W. Drew; Stephen Bishop; Alan Archibald

Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, is the etiologic agent of an infectious disease of that name, characterized by respiratory disorders, abortion in pregnant sows and high mortality in piglets, resulting in significant economic losses in the pig industry worldwide. In order to identify whether genetic differences in PRRSV response may exist in pigs, alveolar macrophages were used to assess the progression of the type-I interferon (IFN) transcript response in porcine alveolar macrophages infected by PRRSV. Our results suggest that a dynamic differential regulation of the type-I IFN and chemokine transcripts may operate during the first hours of infection with and entry of the virus in alveolar macrophages, and provide a compelling mechanism for the establishment of PRRSV replication in susceptible cells.

Collaboration


Dive into the Tahar Ait-Ali's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Pierre Frossard

Animal and Plant Health Agency

View shared research outputs
Top Co-Authors

Avatar

Trevor W. Drew

Veterinary Laboratories Agency

View shared research outputs
Top Co-Authors

Avatar

David G. Westcott

Veterinary Laboratories Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge