Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tahir Rasheed is active.

Publication


Featured researches published by Tahir Rasheed.


Colloids and Surfaces B: Biointerfaces | 2017

Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications

Tahir Rasheed; Muhammad Bilal; Hafiz M.N. Iqbal; Chuanlong Li

Biosynthesis of nanoparticles from plant extracts is receiving enormous interest due to their abundant availability and a broad spectrum of bioactive reducing metabolites. In this study, the reducing potential of Artemisia vulgaris leaves extract (AVLE) was investigated for synthesizing silver nanoparticles without the addition of any external reducing or capping agent. The appearance of blackish brown color evidenced the complete synthesis of nanoparticles. The synthesized silver nanoparticles were characterized by UV-vis spectroscopy, scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscope (TEM), atomic force microscopy (AFM) and Fourier transforms infrared spectroscopy (FT-IR) analysis. UV-vis absorption profile of the bio-reduced sample elucidated the main peak around 420nm, which correspond to the surface plasmon resonance of silver nanoparticles. SEM and AFM analyses confirmed the morphology of the synthesized nanoparticles. Similarly, particles with a distinctive peak of silver were examined with EDX. The average diameter of silver nanoparticles was about 25nm from Transmission Electron Microscopy (TEM). FTIR spectroscopy scrutinized the involvement of various functional groups during nanoparticle synthesis. The green synthesized nanoparticles presented effective antibacterial activity against pathogenic bacteria than AVLE alone. In-vitro antioxidant assays revealed that silver nanoparticles (AV-AgNPs) exhibited promising antioxidant properties. The nanoparticles also displayed a potent cytotoxic effect against HeLa and MCF-7 cell lines. In conclusion, the results supported the advantages of employing a bio-green approach for developing silver nanoparticles with antimicrobial, antioxidant, and antiproliferative activities in a simple and cost- competitive manner.


Science of The Total Environment | 2018

Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals

Tahir Rasheed; Muhammad Bilal; Faran Nabeel; Hafiz M.N. Iqbal; Chuanlong Li; Yongfeng Zhou

The quest for industrial and biotechnological revolution has been contributed in increasing environmental contamination issues, worldwide. The controlled or uncontrolled release of hazardous pollutants from various industrial sectors is one of the key problems facing humanity. Among them, adverse influences of lead, cadmium, and mercury on human health are well known to cause many disorders like reproductive, neurological, endocrine system, and cardiovascular, etc. Besides their presence at lower concentrations, most of these toxic heavy metals are posing noteworthy toxicological concerns. In this context, notable efforts from various regulatory authorities, the increase in the concentration of these toxic heavy metals in the environment is of serious concern, so real-time monitoring is urgently required. This necessitates the exploration for novel and efficient probes for recognition of these toxic agents. Among various methodologies adopted for tailoring such probes, generally the methodologies, in which changes associated with spectral properties, are preferred for the deceptive ease in the recognition process. Accordingly, a promising modality has emerged in the form of radiometric and colorimetric monitoring of these toxic agents. Herein, we review fluorescent sensor based models and their potentialities to address the detection fate of hazardous pollutants for a cleaner environment. Second, recent advances regarding small molecule and rhodamine-based fluorescent sensors, radiometric and colorimetric probes are discussed. The information is also given on the photoinduced electron transfer (PET) mechanism, chelation enhancement fluorescence (CHEF) effect and spirocyclic ring opening mechanism.


International Journal of Biological Macromolecules | 2017

Novel characteristics of horseradish peroxidase immobilized onto the polyvinyl alcohol-alginate beads and its methyl orange degradation potential

Muhammad Bilal; Tahir Rasheed; Hafiz M.N. Iqbal; Hongbo Hu; Wei Wang; Xuehong Zhang

Herein, we report the immobilization of in-house isolated horseradish peroxidase (HRP) from Armoracia rusticana with novel characteristics. The HRP was immobilized onto the self-fabricated polyvinyl alcohol-alginate (PVA-alginate) beads using sodium nitrate as a cross-linker. The PVA-alginate beads (2.0mm size) developed using 10% PVA and 1.5% sodium alginate showed maximal immobilization yield. The surface morphologies of the PVA-alginate (control) and immobilized-HRP were characterized by scanning electron microscopy (SEM). The immobilized-HRP retained 64.14% of its initial activity after 10 consecutive substrate-oxidation cycles as compared to the free counterpart. Simultaneously, the thermal stability of the immobilized-HRP was significantly enhanced as compared to the free HRP. The enzyme leakage (EL) assay was performed by storing the immobilized-HRP in phosphate buffer solution for 30days. Evidently, the leakage of immobilized-HRP was recorded to be 6.98% and 14.82% after 15 and 30days of incubation, respectively. Finally, the immobilized-HRP was used for methyl orange (MO) dye degradation in a batch mode. A noticeable decline in spectral shift accompanied by no appearance of a new peak demonstrated the complete degradation of MO. The degraded fragments of MO were scrutinized by ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). A plausible degradation pathway for MO was proposed based on the identified intermediates. In conclusion, the study portrays the PVA-alginate-immobilized-HRP as a cost-effective and industrially desirable green catalyst, for biotechnological at large and industrial in particular, especially for the treatment of textile dyes or dye-containing industrial waste effluents.


International Journal of Biological Macromolecules | 2017

Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance

Muhammad Bilal; Tahir Rasheed; Hafiz M.N. Iqbal; Hongbo Hu; Wei Wang; Xuehong Zhang

In recent years, the antimicrobial resistance (AMR) or multidrug resistance (MDR) has become a serious health concern and major challenging issue, worldwide. After decades of negligence, the AMR has now captured global attention. The increasing number of antibiotic-resistant strains has threatened the achievements of science and medicine since it inactivates conventional antimicrobial therapeutics. Scientists are trying to respond to AMR/MDR threat by exploring innovative platforms and new therapeutic strategies to tackle infections from these resistant strains and bypass treatment limitations related to these pathologies. The present review focuses on the utilization of bio-inspired novel constructs and their potential applications as novel antimicrobial agents. The first part of the review describes plant-based biological macromolecules containing an immense variety of secondary metabolites, which could be potentially used as alternative strategies to combat antimicrobial resistance. The second part discusses the potential of metal-based macromolecules as effective antimicrobial platforms for preventing infections from resistant strains. The third part comprehensively elucidates how nanoparticles, in particular, metal-integrated nanoparticles can overcome this AMR or MDR issue. Towards the end, information is given with critical concluding remarks, gaps, and finally envisioned with future considerations.


Marine Drugs | 2018

Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements—A Review

Muhammad Bilal; Tahir Rasheed; Juan Sosa-Hernández; Ali Raza; Faran Nabeel; Hafiz M.N. Iqbal

In recent decades, environmental pollution has emerged as a core issue, around the globe, rendering it of fundamental concern to eco-toxicologists, environmental biologists, eco-chemists, pathologists, and researchers from other fields. The dissolution of polluting agents is a leading cause of environmental pollution of all key spheres including the hydrosphere, lithosphere, and biosphere, among others. The widespread occurrence of various pollutants including toxic heavy metals and other emerging hazardous contaminants is a serious concern. With increasing scientific knowledge, socioeconomic awareness, human health problems, and ecological apprehensions, people are more concerned about adverse health outcomes. Against this background, several removal methods have been proposed and implemented with the aim of addressing environmental pollution and sustainable and eco-friendly development. Among them, the biosorption of pollutants using naturally inspired sources, e.g., marine algae, has considerable advantages. In the past few years, marine algae have been extensively studied due to their natural origin, overall cost-effective ratio, and effectiveness against a broader pollutant range; thus, they are considered a potential alternative to the conventional methods used for environmental decontamination. Herein, an effort has been made to highlight the importance of marine algae as naturally inspired biosorbents and their role in biosorption. Biosorption mechanisms and factors affecting biosorption activities are also discussed in this review. The utilization of marine algae as a biosorbent for the removal of numerous potentially toxic elements has also been reviewed.


International Journal of Biological Macromolecules | 2017

Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities

Muhammad Bilal; Tahir Rasheed; Hafiz M.N. Iqbal; Chuanlong Li; Hongbo Hu; Xuehong Zhang

Herein, a facile biosynthesis of silver nanoparticles (AgNPs) and AgNPs-loaded chitosan-alginate constructs with biomedical potentialities is reported. The UV-vis spectroscopic profile confirmed the synthesis of AgNPs using methanolic leaves extract of Euphorbia helioscopia. The newly developed AgNPs were characterized using various analytical and imaging techniques including UV-vis and FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The optimally yielded AgNPs at 24h reaction period were loaded onto various chitosan-alginate constructs. A maximum of 95% loading efficiency (LE) was recorded with a chitosan: alginate ratio at 2:1, followed by 81% at 2:2 ratios. The anti-bacterial activities of AgNPs and AgNPs loaded chitosan-alginate constructs were tested against six bacterial strains i.e. Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Morganella morganii and Haemophilus influenza. A significant reduction in the log values was recorded for all test constructs, in comparison to the initial bacterial count (control value, i.e., 1.5×108 CFU/mL). The cytotoxicity profile revealed complete biocompatibility against normal cell line i.e. L929. Almost all constructs showed considerable cytotoxicity up to certain extant against human epithelial cells (HeLa) cancer cells. In summary, the highest antibacterial activities along with anti-cancer behavior both suggest the biomedical potentialities of newly engineered AgNPs and AgNPs-loaded chitosan-alginate constructs.


Environmental Technology | 2018

TiO2/UV-assisted rhodamine B degradation: putative pathway and identification of intermediates by UPLC/MS

Tahir Rasheed; Muhammad Bilal; Hafiz M.N. Iqbal; Syed Zakir Hussain Shah; Hongbo Hu; Xuehong Zhang; Yongfeng Zhou

ABSTRACT The present study was designed to evaluate the photocatalytic degradation of Rhodamine B (Rh-B) in a self-assembled TiO2-assisted system under UV light irradiation. Chemical oxygen demand, total organic carbon and high-performance liquid chromatography analyses confirmed the elevated Rh-B degradation level. A stepwise meticulous breakdown pathway based on the ultra-performance liquid chromatography coupled with electrospray ionization mass spectrometry is proposed. Results demonstrated that the degradation of Rh-B mainly occurred via N-de-ethylation process, and N-de-ethylated intermediate products were further oxidized into acids and alcohols. Reduction in toxicity of the dye by the formation of metabolites was measured using human cell lines (MTT assay) and toxicity tests based on shrimp Artemia salina. Noticeably, the degraded intermediates of Rh-B revealed low or non-toxicity than the original dye molecule. Therefore, it can be inferred that the TiO2-assisted photocatalysis could be beneficial for the degradation of recalcitrant compounds and textile wastewater effluents, and for the elimination of toxicity therein.


Journal of Photochemistry and Photobiology B-biology | 2018

Catalytic potential of bio-synthesized silver nanoparticles using Convolvulus arvensis extract for the degradation of environmental pollutants

Tahir Rasheed; Muhammad Bilal; Chuanlong Li; Faran Nabeel; Muhammad Khalid; Hafiz M.N. Iqbal

Herein, we reported a facile, green and environmental friendlier biosynthesis of silver nanoparticles using the Convolvulus arvensis extract. The influences of various physicochemical factors such as the concentration of the plant extract, reaction time, and different pH levels were investigated by UV-Vis spectroscopy. The UV-Visible absorption spectrum of biogenic silver nanoparticles at λmax around ~400 nm suggested the biosynthesis of silver nanoparticles. Fourier transform infrared spectroscopy was employed to confirm the chemical transformation and role of various phyto-reductants in the conversion of Ag+ to Ag0. The surface morphology, topography, and elemental composition were analyzed by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. X-ray diffraction corroborated the face-centered cubic crystalline structure. The dynamic light scattering and zeta potential demonstrate the size distribution (90.9 nm) and surface charge (-18.5). Finally, the newly developed C. arvensis based silver nanoparticles were exploited as a catalyst for the catalytic reduction of azo dyes in the presence of NaBH4 as a reducing agent, and reducing the activity of C. arvensis based silver nanoparticles was evaluated by a decrease in optical density using UV-Vis spectrophotometer. The nanoparticles developed herein displayed potential efficiency for the degradation of all the tested dye pollutants. Conclusively, plant-based synthesis of nanoparticles provides an environmentally-responsive option for the reduction of highly environmental-polluted organic compounds including toxic azo dyes as compared to chemical and physical methods.


Science of The Total Environment | 2018

Peroxidases-assisted removal of environmentally-related hazardous pollutants with reference to the reaction mechanisms of industrial dyes

Muhammad Bilal; Tahir Rasheed; Hafiz M.N. Iqbal; Yunjun Yan

Environmental protection is one of the most important challenges for the humankind. Increasing number of emerging pollutants resulting from industrial/human-made activities represents a serious menace to the ecological and environmental equilibrium. Industrial dyes, endocrine disrupters, pesticides, phenols and halogenated phenols, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other xenobiotics are among the top priority environmental pollutants. Some classical remediation approaches including physical, chemical and biological are being employed, but are ineffective in cleaning the environment. Enzyme-catalyzed transformation reactions are gearing accelerating attention in this context as potential alternatives to classical chemical methods. Peroxidases are catalysts able to decontaminate an array of toxic compounds by a free radical mechanism resulting in oxidized or depolymerized products along with a significant toxicity reduction. Admittedly, enzymatic catalysis offers the hallmark of high chemo-, regio-, and enantioselectivity and superior catalytic efficiency under given reaction environment. Moreover, enzymes are considered more benign, socially acceptable and greener production routes since derived from the renewable and sustainable feedstock. Regardless of their versatility and potential use in environmental processes, several limitations, such as heterologous production, catalytic stability, and redox potential should be overcome to implement peroxidases at large-scale transformation and bio-elimination of recalcitrant pollutants. In this article, a critical review of the transformation of different types of hazardous pollutants by peroxidases, with special reference to the proposed reaction mechanisms of several dyes is presented. Following that major challenges for industrial and environmental applications of peroxidases are also discussed. Towards the end, the information is also given on miscellaneous applications of peroxidases, concluding remarks and outlook.


Environmental Management | 2018

Toxicological Assessment and UV/TiO2-Based Induced Degradation Profile of Reactive Black 5 Dye

Muhammad Bilal; Tahir Rasheed; Hafiz M.N. Iqbal; Hongbo Hu; Wei Wang; Xuehong Zhang

In this study, the toxicological and degradation profile of Reactive Black 5 (RB5) dye was evaluated using a UV/TiO2-based degradation system. Fourier transform infrared spectroscopy (FT-IR), thin layer chromatography (TLC), high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) techniques were used to evaluate the degradation level of RB5. The UV-Vis spectral analysis revealed the disappearance of peak intensity at 599 nm (λmax). The FT-IR spectrum of UV/TiO2 treated dye sample manifest appearance of new peaks mainly because of the degraded product and/or disappearance of some characteristics peaks which were present in the untreated spectrum. The HPLC profile verified the RB5 degradation subject to the formation of metabolites at different retention times. A stable color removal higher than 96% with COD removal in the range of 74–82.3% was noted at all evaluated dye concentrations. The tentative degradation pathway of RB5 is proposed following a careful analysis of the intermediates identified by UPLC-MS. Toxicity profile of untreated and degraded dye samples was monitored using three types of human cell lines via MTT assay and acute toxicity testing with Artemia salina. In conclusion, the UV/TiO2-based degradation system could be effectively employed for the remediation of textile wastewater comprising a high concentration of reactive dyes.

Collaboration


Dive into the Tahir Rasheed's collaboration.

Top Co-Authors

Avatar

Muhammad Bilal

University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Chuanlong Li

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Muhammad Bilal

University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Hongbo Hu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xuehong Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Faran Nabeel

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yongfeng Zhou

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Chunyang Yu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Wei Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Ali Raza

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge