Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tai Wang is active.

Publication


Featured researches published by Tai Wang.


Plant Physiology | 2007

Overexpression of an R1R2R3 MYB Gene, OsMYB3R-2, Increases Tolerance to Freezing, Drought, and Salt Stress in Transgenic Arabidopsis

Xiaoyan Dai; Yunyuan Xu; Qibin Ma; Wenying Xu; Tai Wang; Yongbiao Xue; Kang Chong

We used a cDNA microarray approach to monitor the expression profile of rice (Oryza sativa) under cold stress and identified 328 cold-regulated genes. Thirteen such genes encoding MYB, homeodomain, and zinc finger proteins with unknown functions showed a significant change in expression under 72-h cold stress. Among them, OsMYB3R-2 was selected for further study. Unlike most plant R2R3 MYB transcription factors, OsMYB3R-2 has three imperfect repeats in the DNA-binding domain, the same as in animal c-MYB proteins. Expression of OsMYB3R-2 was induced by cold, drought, and salt stress. The Arabidopsis (Arabidopsis thaliana) transgenic plants overexpressing OsMYB3R-2 showed increased tolerance to cold, drought, and salt stress, and the seed germination of transgenic plants was more tolerant to abscisic acid or NaCl than that of wild type. The expression of some clod-related genes, such as dehydration-responsive element-binding protein 2A, COR15a, and RCI2A, was increased to a higher level in OsMYB3R-2-overexpressing plants than in wild type. These results suggest that OsMYB3R-2 acts as a master switch in stress tolerance.


Journal of Proteome Research | 2012

Mechanisms of plant salt response: insights from proteomics.

Heng Zhang; Bing Han; Tai Wang; Sixue Chen; Haiying Li; Yuhong Zhang; Shaojun Dai

Soil salinity is a major abiotic stress that limits plant growth and agriculture productivity. To cope with salt stress, plants have evolved complex salt-responsive signaling and metabolic processes at the cellular, organ, and whole-plant levels. Investigation of the physiological and molecular mechanisms underlying plant salinity tolerance will provide valuable information for effective engineering strategies. Current proteomics provides a high-throughput approach to study sophisticated molecular networks in plants. In this review, we describe a salt-responsive protein database by an integrated analysis of proteomics-based studies. The database contains 2171 salt-responsive protein identities representing 561 unique proteins. These proteins have been identified from leaves, roots, shoots, seedlings, unicells, grains, hypocotyls, radicles, and panicles from 34 plant species. The identified proteins provide invaluable information toward understanding the complex and fine-tuned plant salt-tolerance mechanisms in photosynthesis, reactive oxygen species (ROS) scavenging, ion homeostasis, osmotic modulation, signaling transduction, transcription, protein synthesis/turnover, cytoskeleton dynamics, and cross-tolerance to different stress conditions.


Molecular & Cellular Proteomics | 2007

Proteomics Identification of Differentially Expressed Proteins Associated with Pollen Germination and Tube Growth Reveals Characteristics of Germinated Oryza sativa Pollen

Shao Jun Dai; Tao Tao Chen; Kang Chong; Yongbiao Xue; Si Qi Liu; Tai Wang

Mature pollen from most plant species is metabolically quiescent; however, after pollination, it germinates quickly and gives rise to a pollen tube to transport sperms into the embryo sac. Because methods for collecting a large amount of in vitro germinated pollen grains for transcriptomics and proteomics studies from model plants of Arabidopsis and rice are not available, molecular information about the germination developmental process is lacking. Here we describe a method for obtaining a large quantity of in vitro germinating rice pollen for proteomics study. Two-dimensional electrophoresis of ∼2300 protein spots revealed 186 that were differentially expressed in mature and germinated pollen. Most showed a changed level of expression, and only 66 appeared to be specific to developmental stages. Furthermore 160 differentially expressed protein spots were identified on mass spectrometry to match 120 diverse protein species. These proteins involve different cellular and metabolic processes with obvious functional skew toward wall metabolism, protein synthesis and degradation, cytoskeleton dynamics, and carbohydrate/energy metabolism. Wall metabolism-related proteins are prominently featured in the differentially expressed proteins and the pollen proteome as compared with rice sporophytic proteomes. Our study also revealed multiple isoforms and differential expression patterns between isoforms of a protein. These results provide novel insights into pollen function specialization.


Genome Biology | 2011

Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa

Li Qin Wei; Long Feng Yan; Tai Wang

BackgroundPollen development in flowering plants requires strict control of the gene expression program and genetic information stability by mechanisms possibly including the miRNA pathway. However, our understanding of the miRNA pathway in pollen development remains limited, and the dynamic profile of miRNAs in developing pollen is unknown.ResultsUsing next-generation sequencing technology, we pyrosequenced small RNA populations from rice uninucleate microspores to tricellular pollen and control sporophytic tissues at the genome-wide level. We identified 292 known miRNAs, including members of all 20 families conserved in plants, and 75 novel miRNAs. Of the 292 known miRNAs, 202 were expressed, with 103 enriched, in developing pollen. More than half of these novel miRNAs displayed pollen-or stage-specific expression. Furthermore, analyzing the 367 miRNAs and their predicted targets indicated that correlation in expression profiles of pollen-enriched known miRNAs and their targets significantly differs from that of sporophyte-enriched known miRNAs and their targets in some functional terms, while novel miRNAs appeared to negatively regulate their targets. Importantly, gene ontology abundance analysis demonstrated chromatin assembly and disassembly was important in the targets of bicellular pollen-expressed novel miRNAs. Principal component analysis revealed pollen of all three stages was discriminated from sporophytes, largely because of the novel and non-conserved known miRNAs.ConclusionsOur study, for the first time, revealed the differences in composition and expression profiles of miRNAs between developing pollen and sporophytes, with novel and non-conserved known miRNAs the main contributors. Our results suggest the important roles of the miRNA pathway in pollen development.


Plant Physiology | 2008

Dynamic Proteomic Analysis Reveals a Switch between Central Carbon Metabolism and Alcoholic Fermentation in Rice Filling Grains

Sheng Bao Xu; Tang Li; Zhu Yun Deng; Kang Chong; Yongbiao Xue; Tai Wang

Accumulation of reserve materials in filling grains involves the coordination of different metabolic and cellular processes, and understanding the molecular mechanisms underlying the interconnections remains a major challenge for proteomics. Rice (Oryza sativa) is an excellent model for studying grain filling because of its importance as a staple food and the available genome sequence database. Our observations showed that embryo differentiation and endosperm cellularization in developing rice seeds were completed approximately 6 d after flowering (DAF); thereafter, the immature seeds mainly underwent cell enlargement and reached the size of mature seeds at 12 DAF. Grain filling began at 6 DAF and lasted until 20 DAF. Dynamic proteomic analyses revealed 396 protein spots differentially expressed throughout eight sequential developmental stages from 6 to 20 DAF and determined 345 identities. These proteins were involved in different cellular and metabolic processes with a prominently functional skew toward metabolism (45%) and protein synthesis/destination (20%). Expression analyses of protein groups associated with different functional categories/subcategories showed that substantially up-regulated proteins were involved in starch synthesis and alcoholic fermentation, whereas the down-regulated proteins in the process were involved in central carbon metabolism and most of the other functional categories/subcategories such as cell growth/division, protein synthesis, proteolysis, and signal transduction. The coordinated changes were consistent with the transition from cell growth and differentiation to starch synthesis and clearly indicated that a switch from central carbon metabolism to alcoholic fermentation may be important for starch synthesis and accumulation in the developmental process.


Journal of Proteome Research | 2011

Physiological and Proteomic Analysis of Salinity Tolerance in Puccinellia tenuiflora

Juanjuan Yu; Sixue Chen; Qi Zhao; Tai Wang; Chuanping Yang; Carolyn Diaz; Guorong Sun; Shaojun Dai

Soil salinity poses a serious threat to agriculture productivity throughout the world. Studying mechanisms of salinity tolerance in halophytic plants will provide valuable information for engineering plants for enhanced salt tolerance. Monocotyledonous Puccinellia tenuiflora is a halophytic species that widely distributed in the saline-alkali soil of the Songnen plain in northeastern China. Here we investigate the molecular mechanisms underlying moderate salt tolerance of P. tenuiflora using a combined physiological and proteomic approach. The changes in biomass, inorganic ion content, osmolytes, photosynthesis, defense-related enzyme activities, and metabolites in the course of salt treatment were analyzed in the leaves. Comparative proteomic analysis revealed 107 identities (representing 93 unique proteins) differentially expressed in P. tenuiflora leaves under saline conditions. These proteins were mainly involved in photosynthesis, stress and defense, carbohydrate and energy metabolism, protein metabolism, signaling, membrane, and transport. Our results showed that reduction of photosynthesis under salt treatment was attributed to the down-regulation of the light-harvesting complex (LHC) and Calvin cycle enzymes. Selective uptake of inorganic ions, high K(+)/Na(+) ratio, Ca(2+) concentration changes, and an accumulation of osmolytes contributed to ion balance and osmotic adjustment in leaf cells. Importantly, P. tenuiflora plants developed diverse reactive oxygen species (ROS) scavenging mechanisms in their leaves to cope with moderate salinity, including enhancement of the photorespiration pathway and thermal dissipation, synthesis of the low-molecular-weight antioxidant α-tocopherol, and an accumulation of compatible solutes. This study provides important information toward improving salt tolerance of cereals.


Journal of Proteomics | 2013

Proteomics-based investigation of salt-responsive mechanisms in plant roots.

Qi Zhao; Heng Zhang; Tai Wang; Sixue Chen; Shaojun Dai

Salinity is one of the major abiotic stresses that limits agricultural productivity worldwide. Plant roots function as the primary site of salinity perception. Salt responses in roots are essential for maintaining root functionality, as well as for transmitting the salt signal to shoot for proper salt response and adaptation in the entire plant. Therefore, a thorough understanding of signaling and metabolic mechanisms of salt response in roots is critical for improving plant salt tolerance. Current proteomic studies have provided salt-responsive expression patterns of 905 proteins in 14 plant species. Through integrative analysis of salt-responsive proteins and previous physiological and molecular findings, this review summarizes current understanding of salt responses in roots and highlights proteomic findings on the molecular mechanisms in the fine-tuned salt-responsive networks. At the proteome level, the following processes become dominant in root salt response: (i) salt signal perception and transduction; (ii) detoxification of reactive oxygen species (ROS); (iii) salt uptake/exclusion and compartmentalization; (iv) protein translation and/or turnover dynamics; (v) cytoskeleton/cell wall dynamics; (vi) carbohydrate and energy metabolism; and (vii) other salt-responsive metabolisms. These processes work together to gain cellular homeostasis in roots and determine the overall phenotype of plant growth and development under salt stress.


Plant Molecular Biology | 2006

The rice OsRad21-4, an orthologue of yeast Rec8 protein, is required for efficient meiosis.

Liangran Zhang; Jiayi Tao; Shunxin Wang; Kang Chong; Tai Wang

In yeast, Rad21/Scc1 and its meiotic variant Rec8 are key players in the establishment and subsequent dissolution of sister chromatid cohesion for mitosis and meiosis, respectively, which are essential for chromosome segregation. Unlike yeast, our identification revealed that the rice genome has 4 RAD21-like genes that share lower than 21% identity at polypeptide levels, and each is present as a single copy in this genome. Here we describe our analysis of the function of OsRAD21-4 by RNAi. Western blot analyses indicated that the protein was most abundant in young flowers and less in leaves and buds but absent in roots. In flowers, the expression was further defined to premeiotic pollen mother cells (PMCs) and meiotic PMCs of anthers. Meiotic chromosome behaviors were monitored from male meiocytes of OsRAD21-4-deficient lines mediated by RNAi. The male meiocytes showed multiple aberrant events at meiotic prophase I, including over-condensation of chromosomes, precocious segregation of homologues and chromosome fragmentation. Fluorescence in situ hybridization experiments revealed that the deficient lines were defective in homologous pairing and cohesion at sister chromatid arms. These defects resulted in unequal chromosome segregation and aberrant spore generation. These observations suggest that OsRad21-4 is essential for efficient meiosis.


Journal of Proteome Research | 2010

Desiccation tolerance mechanism in resurrection fern-ally Selaginella tamariscina revealed by physiological and proteomic analysis.

Xiaonan Wang; Sixue Chen; Heng Zhang; Lei Shi; Fenglin Cao; Lihai Guo; Yongming Xie; Tai Wang; Xiufeng Yan; Shaojun Dai

Drought is one of the most severe limitations to plant growth and productivity. Resurrection plants have evolved a unique capability to tolerate desiccation in vegetative tissues. Fern-ally Selaginella tamariscina (Beauv.) is one of the most primitive vascular resurrection plants, which can survive a desiccated state and recover when water becomes available. To better understand the mechanism of desiccation tolerance, we have applied physiological and proteomic analysis. Samples of S. tamariscina were water-deprived for up to seven days followed by 12 h of rewatering. Our results showed that endogenous abscisic acid (ABA) increased to regulate dehydration-responsive genes/proteins and physiological processes. In the course of dehydration, the contents of osmolytes represented by soluble sugars and proline were increased to maintain cell structure integrity. The activities of four antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione reductase (GR)) also increased. In contrast, both the rate of photosynthesis and the chlorophyll content decreased, and plasma membrane integrity was lost. We identified 138 desiccation-responsive two-dimensional electrophoresis (2-DE) spots, representing 103 unique proteins. Hierarchical clustering analysis revealed that 83% of the proteins were down-regulated upon dehydration. They were mainly involved in photosynthesis, carbohydrate and energy metabolism, stress and defense, protein metabolism, signaling, membrane/transport, cell structure, and cell division. The dynamic expression changes of the desiccation-responsive proteins provide strong evidence that cell structure modification, photosynthesis reduction, antioxidant system activation, and protein post-transcriptional/translational modifications are essential to the poikilochlorophyllous fern-ally S. tamariscina in response to dehydration. In addition, our comparative analysis of dehydration-responsive proteins in vegetative tissues from 19 desiccation tolerant and nontolerant plant species suggests that resurrection S. tamariscina has developed a specific desiccation tolerant mechanism. To our knowledge, this study constitutes the first detailed investigation of the protein complement in fern/fern-allies.


Plant Molecular Biology | 2007

OsDMC1 is required for homologous pairing in Oryza sativa.

Zhu Yun Deng; Tai Wang

OsDMC1 is the rice homologue of the yeast DMC1 gene. Here, we analyzed the function of OsDMC1 in meiosis using an RNA interference approach. The OsDMC1–RNAi lines grew normally during their vegetative phase but showed spikelet and pollen sterility. The sterility phenotypes were associated with down-regulated OsDMC1 transcript and protein levels mediated by RNAi. Further cytological observations of male meiocytes revealed that knock-down of OsDMC1 led to defects in bivalent formation and subsequent unequal chromosome segregation and irregular spore generation, and induced changes in male meiotic progression. Fluorescent in situ hybridization experiments revealed that the OsDMC1–RNAi lines were defective in homologous pairing. These data indicate that OsDMC1 is essential for rice meiosis and plays an important role in homologous pairing.

Collaboration


Dive into the Tai Wang's collaboration.

Top Co-Authors

Avatar

Shaojun Dai

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kang Chong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ning Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhu Yun Deng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zizhang Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tang Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yongbiao Xue

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liqin Wei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qi Zhao

Northeast Forestry University

View shared research outputs
Researchain Logo
Decentralizing Knowledge